使用Keras建立模型并訓(xùn)練等一系列操作方式
由于Keras是一種建立在已有深度學(xué)習(xí)框架上的二次框架,其使用起來非常方便,其后端實(shí)現(xiàn)有兩種方法,theano和tensorflow。由于自己平時(shí)用tensorflow,所以選擇后端用tensorflow的Keras,代碼寫起來更加方便。
1、建立模型
Keras分為兩種不同的建模方式,
Sequential models:這種方法用于實(shí)現(xiàn)一些簡單的模型。你只需要向一些存在的模型中添加層就行了。
Functional API:Keras的API是非常強(qiáng)大的,你可以利用這些API來構(gòu)造更加復(fù)雜的模型,比如多輸出模型,有向無環(huán)圖等等。
這里采用sequential models方法。
構(gòu)建序列模型。
def define_model(): model = Sequential() # setup first conv layer model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32] # setup first maxpooling layer model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32] # setup second conv layer model.add(Conv2D(8, kernel_size=(3, 3), activation="relu", padding='same')) # [10, 60, 60, 8] # setup second maxpooling layer model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8] # add bianping layer, 3200 = 20 * 20 * 8 model.add(Flatten()) # [10, 3200] # add first full connection layer model.add(Dense(512, activation='sigmoid')) # [10, 512] # add dropout layer model.add(Dropout(0.5)) # add second full connection layer model.add(Dense(4, activation='softmax')) # [10, 4] return model
可以看到定義模型時(shí)輸出的網(wǎng)絡(luò)結(jié)構(gòu)。
2、準(zhǔn)備數(shù)據(jù)
def load_data(resultpath): datapath = os.path.join(resultpath, "data10_4.npz") if os.path.exists(datapath): data = np.load(datapath) X, Y = data["X"], data["Y"] else: X = np.array(np.arange(432000)).reshape(10, 120, 120, 3) Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) np.savez(datapath, X=X, Y=Y) print('Saved dataset to dataset.npz.') print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape)) return X, Y
3、訓(xùn)練模型
def train_model(resultpath): model = define_model() # if want to use SGD, first define sgd, then set optimizer=sgd sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True) # select loss\optimizer\ model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) model.summary() # draw the model structure plot_model(model, show_shapes=True, to_file=os.path.join(resultpath, 'model.png')) # load data X, Y = load_data(resultpath) # split train and test data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2) # input data to model and train history = model.fit(X_train, Y_train, batch_size=2, epochs=10, validation_data=(X_test, Y_test), verbose=1, shuffle=True) # evaluate the model loss, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', loss) print('Test accuracy:', acc)
可以看到訓(xùn)練時(shí)輸出的日志。因?yàn)槭请S機(jī)數(shù)據(jù),沒有意義,這里訓(xùn)練的結(jié)果不必計(jì)較,只是練習(xí)而已。
保存下來的模型結(jié)構(gòu):
4、保存與加載模型并測試
有兩種保存方式
4.1 直接保存模型h5
保存:
def my_save_model(resultpath): model = train_model(resultpath) # the first way to save model model.save(os.path.join(resultpath, 'my_model.h5'))
加載:
def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the first way of load model model2 = load_model(os.path.join(resultpath, 'my_model.h5')) model2.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model2.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model2.predict_classes(X) print("predicct is: ", y)
4.2 分別保存網(wǎng)絡(luò)結(jié)構(gòu)和權(quán)重
保存:
def my_save_model(resultpath): model = train_model(resultpath) # the secon way : save trained network structure and weights model_json = model.to_json() open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json) model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5'))
加載:
def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the second way : load model structure and weights model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read()) model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5')) model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model.predict_classes(X) print("predicct is: ", y)
可以看到,兩次的結(jié)果是一樣的。
5、完整代碼
from keras.models import Sequential from keras.layers import Dense, Conv2D, MaxPooling2D, Flatten, Dropout from keras.losses import categorical_crossentropy from keras.optimizers import Adam from keras.utils.vis_utils import plot_model from keras.optimizers import SGD from keras.models import model_from_json from keras.models import load_model from keras.utils import np_utils import numpy as np import os from sklearn.model_selection import train_test_split def load_data(resultpath): datapath = os.path.join(resultpath, "data10_4.npz") if os.path.exists(datapath): data = np.load(datapath) X, Y = data["X"], data["Y"] else: X = np.array(np.arange(432000)).reshape(10, 120, 120, 3) Y = [0, 0, 1, 1, 2, 2, 3, 3, 2, 0] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) np.savez(datapath, X=X, Y=Y) print('Saved dataset to dataset.npz.') print('X_shape:{}\nY_shape:{}'.format(X.shape, Y.shape)) return X, Y def define_model(): model = Sequential() # setup first conv layer model.add(Conv2D(32, (3, 3), activation="relu", input_shape=(120, 120, 3), padding='same')) # [10, 120, 120, 32] # setup first maxpooling layer model.add(MaxPooling2D(pool_size=(2, 2))) # [10, 60, 60, 32] # setup second conv layer model.add(Conv2D(8, kernel_size=(3, 3), activation="relu", padding='same')) # [10, 60, 60, 8] # setup second maxpooling layer model.add(MaxPooling2D(pool_size=(3, 3))) # [10, 20, 20, 8] # add bianping layer, 3200 = 20 * 20 * 8 model.add(Flatten()) # [10, 3200] # add first full connection layer model.add(Dense(512, activation='sigmoid')) # [10, 512] # add dropout layer model.add(Dropout(0.5)) # add second full connection layer model.add(Dense(4, activation='softmax')) # [10, 4] return model def train_model(resultpath): model = define_model() # if want to use SGD, first define sgd, then set optimizer=sgd sgd = SGD(lr=0.001, decay=1e-6, momentum=0, nesterov=True) # select loss\optimizer\ model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) model.summary() # draw the model structure plot_model(model, show_shapes=True, to_file=os.path.join(resultpath, 'model.png')) # load data X, Y = load_data(resultpath) # split train and test data X_train, X_test, Y_train, Y_test = train_test_split( X, Y, test_size=0.2, random_state=2) # input data to model and train history = model.fit(X_train, Y_train, batch_size=2, epochs=10, validation_data=(X_test, Y_test), verbose=1, shuffle=True) # evaluate the model loss, acc = model.evaluate(X_test, Y_test, verbose=0) print('Test loss:', loss) print('Test accuracy:', acc) return model def my_save_model(resultpath): model = train_model(resultpath) # the first way to save model model.save(os.path.join(resultpath, 'my_model.h5')) # the secon way : save trained network structure and weights model_json = model.to_json() open(os.path.join(resultpath, 'my_model_structure.json'), 'w').write(model_json) model.save_weights(os.path.join(resultpath, 'my_model_weights.hd5')) def my_load_model(resultpath): # test data X = np.array(np.arange(86400)).reshape(2, 120, 120, 3) Y = [0, 1] X = X.astype('float32') Y = np_utils.to_categorical(Y, 4) # the first way of load model model2 = load_model(os.path.join(resultpath, 'my_model.h5')) model2.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model2.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model2.predict_classes(X) print("predicct is: ", y) # the second way : load model structure and weights model = model_from_json(open(os.path.join(resultpath, 'my_model_structure.json')).read()) model.load_weights(os.path.join(resultpath, 'my_model_weights.hd5')) model.compile(loss=categorical_crossentropy, optimizer=Adam(), metrics=['accuracy']) test_loss, test_acc = model.evaluate(X, Y, verbose=0) print('Test loss:', test_loss) print('Test accuracy:', test_acc) y = model.predict_classes(X) print("predicct is: ", y) def main(): resultpath = "result" #train_model(resultpath) #my_save_model(resultpath) my_load_model(resultpath) if __name__ == "__main__": main()
以上這篇使用Keras建立模型并訓(xùn)練等一系列操作方式就是小編分享給大家的全部內(nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
WxPython界面如何用pubsub展示進(jìn)程工作的進(jìn)度條
這篇文章主要介紹了WxPython界面如何用pubsub展示進(jìn)程工作的進(jìn)度條,具有很好的參考價(jià)值,希望對大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2022-11-11基于Python+Tkinter實(shí)現(xiàn)一個(gè)簡易計(jì)算器
Tkinter作為Python的標(biāo)準(zhǔn)庫,是非常流行的Python GUI工具,同時(shí)也是非常容易學(xué)習(xí)的。本文將利用Tkinter繪制一個(gè)簡單的計(jì)算器,感興趣的可以試一試2022-01-01python3多線程中使用線程睡眠的方法實(shí)現(xiàn)
線程睡眠是一個(gè)常見且有用的工具,用于控制線程的執(zhí)行順序和速度,本文主要介紹了python3多線程中使用線程睡眠的方法實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的可以了解一下2024-08-08Python面向?qū)ο蟮娜筇匦苑庋b、繼承、多態(tài)
這篇文章介紹了Python面向?qū)ο蟮娜筇匦苑庋b、繼承、多態(tài),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2022-07-07淺談python連續(xù)賦值可能引發(fā)的錯(cuò)誤
今天小編就為大家分享一篇淺談python連續(xù)賦值可能引發(fā)的錯(cuò)誤,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-11-11