Keras實(shí)現(xiàn)DenseNet結(jié)構(gòu)操作
DenseNet結(jié)構(gòu)在16年由Huang Gao和Liu Zhuang等人提出,并且在CVRP2017中被評(píng)為最佳論文。網(wǎng)絡(luò)的核心結(jié)構(gòu)為如下所示的Dense塊,在每一個(gè)Dense塊中,存在多個(gè)Dense層,即下圖所示的H1~H4。各Dense層之間彼此均相互連接,即H1的輸入為x0,輸出為x1,H2的輸入即為[x0, x1],輸出為x2,依次類推。最終Dense塊的輸出即為[x0, x1, x2, x3, x4]。這種結(jié)構(gòu)個(gè)人感覺(jué)非常類似生物學(xué)里邊的神經(jīng)元連接方式,應(yīng)該能夠比較有效的提高了網(wǎng)絡(luò)中特征信息的利用效率。
DenseNet的其他結(jié)構(gòu)就非常類似一般的卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)了,可以參考論文中提供的網(wǎng)路結(jié)構(gòu)圖(下圖)。但是個(gè)人感覺(jué),DenseNet的這種結(jié)構(gòu)應(yīng)該是存在進(jìn)一步的優(yōu)化方法的,比如可能不一定需要在Dense塊中對(duì)每一個(gè)Dense層均直接進(jìn)行相互連接,來(lái)縮小網(wǎng)絡(luò)的結(jié)構(gòu);也可能可以在不相鄰的Dense塊之間通過(guò)簡(jiǎn)單的下采樣操作進(jìn)行連接,進(jìn)一步提升網(wǎng)絡(luò)對(duì)不同尺度的特征的利用效率。
由于DenseNet的密集連接方式,在構(gòu)建一個(gè)相同容量的網(wǎng)絡(luò)時(shí)其所需的參數(shù)數(shù)量遠(yuǎn)小于其之前提出的如resnet等結(jié)構(gòu)。進(jìn)一步,個(gè)人感覺(jué)應(yīng)該可以把Dense塊看做對(duì)一個(gè)有較多參數(shù)的卷積層的高效替代。因此,其也可以結(jié)合U-Net等網(wǎng)絡(luò)結(jié)構(gòu),來(lái)進(jìn)一步優(yōu)化網(wǎng)絡(luò)性能,比如單純的把U-net中的所有卷積層全部換成DenseNet的結(jié)構(gòu),就可以顯著壓縮網(wǎng)絡(luò)大小。
下面基于Keras實(shí)現(xiàn)DenseNet-BC結(jié)構(gòu)。首先定義Dense層,根據(jù)論文描述構(gòu)建如下:
def DenseLayer(x, nb_filter, bn_size=4, alpha=0.0, drop_rate=0.2): # Bottleneck layers x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(bn_size*nb_filter, (1, 1), strides=(1,1), padding='same')(x) # Composite function x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(nb_filter, (3, 3), strides=(1,1), padding='same')(x) if drop_rate: x = Dropout(drop_rate)(x) return x
論文原文中提出使用1*1卷積核的卷積層作為bottleneck層來(lái)優(yōu)化計(jì)算效率。原文中使用的激活函數(shù)全部為relu,但個(gè)人習(xí)慣是用leakyrelu進(jìn)行構(gòu)建,來(lái)方便調(diào)參。
之后是用Dense層搭建Dense塊,如下:
def DenseBlock(x, nb_layers, growth_rate, drop_rate=0.2): for ii in range(nb_layers): conv = DenseLayer(x, nb_filter=growth_rate, drop_rate=drop_rate) x = concatenate([x, conv], axis=3) return x
如論文中所述,將每一個(gè)Dense層的輸出與其輸入融合之后作為下一Dense層的輸入,來(lái)實(shí)現(xiàn)密集連接。
最后是各Dense塊之間的過(guò)渡層,如下:
def TransitionLayer(x, compression=0.5, alpha=0.0, is_max=0): nb_filter = int(x.shape.as_list()[-1]*compression) x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(nb_filter, (1, 1), strides=(1,1), padding='same')(x) if is_max != 0: x = MaxPooling2D(pool_size=(2, 2), strides=2)(x) else: x = AveragePooling2D(pool_size=(2, 2), strides=2)(x) return x
論文中提出使用均值池化層來(lái)作下采樣,不過(guò)在邊緣特征提取方面,最大池化層效果應(yīng)該更好,這里就加了相關(guān)接口。
將上述結(jié)構(gòu)按照論文中提出的結(jié)構(gòu)進(jìn)行拼接,這里選擇的參數(shù)是論文中提到的L=100,k=12,網(wǎng)絡(luò)連接如下:
growth_rate = 12 inpt = Input(shape=(32,32,3)) x = Conv2D(growth_rate*2, (3, 3), strides=1, padding='same')(inpt) x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=0.1)(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = TransitionLayer(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = TransitionLayer(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = BatchNormalization(axis=3)(x) x = GlobalAveragePooling2D()(x) x = Dense(10, activation='softmax')(x) model = Model(inpt, x) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary()
雖然我們已經(jīng)完成了網(wǎng)絡(luò)的架設(shè),網(wǎng)絡(luò)本身的參數(shù)數(shù)量也僅有0.5M,但由于以這種方式實(shí)現(xiàn)的網(wǎng)絡(luò)在Dense塊中,每一次concat均需要開(kāi)辟一組全新的內(nèi)存空間,導(dǎo)致實(shí)際需要的內(nèi)存空間非常大。作者在17年的時(shí)候,還專門(mén)寫(xiě)了相關(guān)的技術(shù)報(bào)告:https://arxiv.org/abs/1707.06990來(lái)說(shuō)明怎么節(jié)省內(nèi)存空間,不過(guò)單純用keras實(shí)現(xiàn)起來(lái)是比較麻煩。下一篇博客中將以pytorch框架來(lái)對(duì)其進(jìn)行實(shí)現(xiàn)。
最后放出網(wǎng)絡(luò)完整代碼:
import numpy as np import keras from keras.models import Model, save_model, load_model from keras.layers import Input, Dense, Dropout, BatchNormalization, LeakyReLU, concatenate from keras.layers import Conv2D, MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D ## data import pickle data_batch_1 = pickle.load(open("cifar-10-batches-py/data_batch_1", 'rb'), encoding='bytes') data_batch_2 = pickle.load(open("cifar-10-batches-py/data_batch_2", 'rb'), encoding='bytes') data_batch_3 = pickle.load(open("cifar-10-batches-py/data_batch_3", 'rb'), encoding='bytes') data_batch_4 = pickle.load(open("cifar-10-batches-py/data_batch_4", 'rb'), encoding='bytes') data_batch_5 = pickle.load(open("cifar-10-batches-py/data_batch_5", 'rb'), encoding='bytes') train_X_1 = data_batch_1[b'data'] train_X_1 = train_X_1.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") train_Y_1 = data_batch_1[b'labels'] train_X_2 = data_batch_2[b'data'] train_X_2 = train_X_2.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") train_Y_2 = data_batch_2[b'labels'] train_X_3 = data_batch_3[b'data'] train_X_3 = train_X_3.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") train_Y_3 = data_batch_3[b'labels'] train_X_4 = data_batch_4[b'data'] train_X_4 = train_X_4.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") train_Y_4 = data_batch_4[b'labels'] train_X_5 = data_batch_5[b'data'] train_X_5 = train_X_5.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") train_Y_5 = data_batch_5[b'labels'] train_X = np.row_stack((train_X_1, train_X_2)) train_X = np.row_stack((train_X, train_X_3)) train_X = np.row_stack((train_X, train_X_4)) train_X = np.row_stack((train_X, train_X_5)) train_Y = np.row_stack((train_Y_1, train_Y_2)) train_Y = np.row_stack((train_Y, train_Y_3)) train_Y = np.row_stack((train_Y, train_Y_4)) train_Y = np.row_stack((train_Y, train_Y_5)) train_Y = train_Y.reshape(50000, 1).transpose(0, 1).astype("int32") train_Y = keras.utils.to_categorical(train_Y) test_batch = pickle.load(open("cifar-10-batches-py/test_batch", 'rb'), encoding='bytes') test_X = test_batch[b'data'] test_X = test_X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") test_Y = test_batch[b'labels'] test_Y = keras.utils.to_categorical(test_Y) train_X /= 255 test_X /= 255 # model def DenseLayer(x, nb_filter, bn_size=4, alpha=0.0, drop_rate=0.2): # Bottleneck layers x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(bn_size*nb_filter, (1, 1), strides=(1,1), padding='same')(x) # Composite function x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(nb_filter, (3, 3), strides=(1,1), padding='same')(x) if drop_rate: x = Dropout(drop_rate)(x) return x def DenseBlock(x, nb_layers, growth_rate, drop_rate=0.2): for ii in range(nb_layers): conv = DenseLayer(x, nb_filter=growth_rate, drop_rate=drop_rate) x = concatenate([x, conv], axis=3) return x def TransitionLayer(x, compression=0.5, alpha=0.0, is_max=0): nb_filter = int(x.shape.as_list()[-1]*compression) x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=alpha)(x) x = Conv2D(nb_filter, (1, 1), strides=(1,1), padding='same')(x) if is_max != 0: x = MaxPooling2D(pool_size=(2, 2), strides=2)(x) else: x = AveragePooling2D(pool_size=(2, 2), strides=2)(x) return x growth_rate = 12 inpt = Input(shape=(32,32,3)) x = Conv2D(growth_rate*2, (3, 3), strides=1, padding='same')(inpt) x = BatchNormalization(axis=3)(x) x = LeakyReLU(alpha=0.1)(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = TransitionLayer(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = TransitionLayer(x) x = DenseBlock(x, 12, growth_rate, drop_rate=0.2) x = BatchNormalization(axis=3)(x) x = GlobalAveragePooling2D()(x) x = Dense(10, activation='softmax')(x) model = Model(inpt, x) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) model.summary() for ii in range(10): print("Epoch:", ii+1) model.fit(train_X, train_Y, batch_size=100, epochs=1, verbose=1) score = model.evaluate(test_X, test_Y, verbose=1) print('Test loss =', score[0]) print('Test accuracy =', score[1]) save_model(model, 'DenseNet.h5') model = load_model('DenseNet.h5') pred_Y = model.predict(test_X) score = model.evaluate(test_X, test_Y, verbose=0) print('Test loss =', score[0]) print('Test accuracy =', score[1])
以上這篇Keras實(shí)現(xiàn)DenseNet結(jié)構(gòu)操作就是小編分享給大家的全部?jī)?nèi)容了,希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
python pygame實(shí)現(xiàn)五子棋小游戲
這篇文章主要為大家詳細(xì)介紹了python pygame實(shí)現(xiàn)五子棋小游戲,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-06-06opencv-python+yolov3實(shí)現(xiàn)目標(biāo)檢測(cè)
因?yàn)樽罱娜蝿?wù)有用到目標(biāo)檢測(cè),快速地了解了目標(biāo)檢測(cè)這一任務(wù),并且實(shí)現(xiàn)了使用opencv進(jìn)行目標(biāo)檢測(cè)。感興趣的可以了解一下2021-06-06Python的Socket編程過(guò)程中實(shí)現(xiàn)UDP端口復(fù)用的實(shí)例分享
這篇文章主要介紹了Python的Socket編程過(guò)程中實(shí)現(xiàn)UDP端口復(fù)用的實(shí)例分享,文中作者用到了Python的twisted異步框架,需要的朋友可以參考下2016-03-03Python自動(dòng)化辦公實(shí)戰(zhàn)案例詳解(Word、Excel、Pdf、Email郵件)
這篇文章基于Python自動(dòng)化辦公,主要介紹了使用Python相關(guān)庫(kù),依次完成Word文檔替換、Excel表格讀取、Pdf文件生成和Email自動(dòng)郵件發(fā)送任務(wù)。感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下2021-12-12Python?正則表達(dá)式基礎(chǔ)知識(shí)點(diǎn)及實(shí)例
在本篇文章里小編給大家整理了關(guān)于Python正則表達(dá)式的一些基礎(chǔ)知識(shí)點(diǎn)以及相關(guān)用法實(shí)例內(nèi)容,需要的朋友們可以參考下。2021-12-12