欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python matplotlib讀取excel數(shù)據(jù)并用for循環(huán)畫多個子圖subplot操作

 更新時間:2020年07月14日 09:35:01   作者:李逐風(fēng)  
這篇文章主要介紹了Python matplotlib讀取excel數(shù)據(jù)并用for循環(huán)畫多個子圖subplot操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧

讀取excel數(shù)據(jù)需要用到xlrd模塊,在命令行運行下面命令進(jìn)行安裝

pip install xlrd

表格內(nèi)容大致如下,有若干sheet,每個sheet記錄了同一所學(xué)校的所有學(xué)生成績,分為語文、數(shù)學(xué)、英語、綜合、總分

考號 姓名 班級 學(xué)校 語文 數(shù)學(xué) 英語 綜合 總分
... ... ... ... 136 136 100 57 429
... ... ... ... 128 106 70 54 358
... ... ... ... 110.5 62 92 44 308.5

畫多張子圖需要用到subplot函數(shù)

subplot(nrows, ncols, index, **kwargs)

想要在一張畫布上按如下格式畫多張子圖

語文 --- 數(shù)學(xué)

英語 --- 綜合

----- 總分 ----

需要用的subplot參數(shù)分別為

subplot(321) --- subplot(322)

subplot(323) --- subplot(324)

subplot(313)

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from xlrd import open_workbook as owb
import matplotlib.pyplot as plt
#import matplotlib.colors as colors
#from matplotlib.ticker import MultipleLocator, FormatStrFormatter, FuncFormatter
import numpy as np
 
districts=[] # 存儲各校名稱--對應(yīng)于excel表格的sheet名
data_index = 0
new_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
    '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
    '#bcbd22', '#17becf']
wb = owb('raw_data.xlsx') # 數(shù)據(jù)文件
active_districts = ['二小','一小','四小'] ## 填寫需要畫哪些學(xué)校的,名字需要與表格內(nèi)一致
avg_yuwen = []
avg_shuxue = []
avg_yingyu = []
avg_zonghe = []
avg_total = []
'按頁數(shù)依次讀取表格數(shù)據(jù)作為Y軸參數(shù)'
for s in wb.sheets():
 #以下兩行用于控制是否全部繪圖,還是只繪選擇的區(qū)
 #if s.name not in active_districts:
  # continue
 print('Sheet: ', s.name)
 districts.append(s.name)
 avg_score = 0
 yuwen = 0
 shuxue = 0
 yingyu = 0
 zonghe = 0
 zongfen = 0
 total_student = 0
 for row in range(1,s.nrows):
  total_student += 1
  #讀取各科成績并計算平均分
  yuwen = yuwen + (s.cell(row, 4).value - yuwen)/total_student # 語文
  shuxue = shuxue + (s.cell(row, 5).value - shuxue) / total_student # 數(shù)學(xué)
  yingyu = yingyu + (s.cell(row, 6).value - yingyu) / total_student # 英語
  zonghe = zonghe + (s.cell(row, 7).value - zonghe) / total_student # 綜合
  zongfen = zongfen + (s.cell(row, 8).value - zongfen) / total_student # 總分
 avg_yuwen.append(yuwen)
 avg_shuxue.append(shuxue)
 avg_yingyu.append(yingyu)
 avg_zonghe.append(zonghe)
 avg_total.append(zongfen)
 data_index += 1
 
print('開始畫圖...')
plt.rcParams['font.sans-serif']=['SimHei'] # 中文支持
plt.rcParams['axes.unicode_minus']=False # 中文支持
figsize = 11,14
fig = plt.figure(figsize=figsize)
fig.suptitle('各校各科成績平均分統(tǒng)計',fontsize=18)
my_x=np.arange(len(districts))
width=0.5
 
ax1 = plt.subplot(321)
#total_width=width*(len(districts))
b = ax1.bar(my_x , avg_yuwen, width, tick_label=districts, align='center', color=new_colors)
for i in range(0,len(avg_yuwen)):
 ax1.text(my_x[i], avg_yuwen[i], '%.2f' % (avg_yuwen[i]), ha='center', va='bottom',fontsize=10)
ax1.set_title(u'語文')
ax1.set_ylabel(u"平均分")
ax1.set_ylim(60, 130)
 
ax2 = plt.subplot(322)
ax2.bar(my_x, avg_shuxue, width, tick_label=districts, align='center', color=new_colors)
for i in range(0, len(avg_shuxue)):
 ax2.text(my_x[i], avg_shuxue[i], '%.2f' %(avg_shuxue[i]), ha='center', va='bottom', fontsize=10)
ax2.set_title(u'數(shù)學(xué)')
ax2.set_ylabel(u'平均分')
ax2.set_ylim(50,120)
 
ax3 = plt.subplot(323)
b = ax3.bar(my_x , avg_yingyu, width, tick_label=districts, align='center', color=new_colors)
for i in range(0,len(avg_yingyu)):
 ax3.text(my_x[i], avg_yingyu[i], '%.2f' % (avg_yingyu[i]), ha='center', va='bottom',fontsize=10)
ax3.set_title(u'英語')
ax3.set_ylabel(u"平均分")
ax3.set_ylim(30, 100)
 
ax4 = plt.subplot(324)
b = ax4.bar(my_x , avg_zonghe, width, tick_label=districts, align='center', color=new_colors)
for i in range(0,len(avg_zonghe)):
 ax4.text(my_x[i], avg_zonghe[i], '%.2f' % (avg_zonghe[i]), ha='center', va='bottom',fontsize=10)
ax4.set_title(u'綜合')
ax4.set_ylabel(u"平均分")
ax4.set_ylim(0, 60)
 
ax5 = plt.subplot(313)
total_width=width*(len(districts))
b = ax5.bar(my_x , avg_total, width, tick_label=districts, align='center', color=new_colors)
for i in range(0,len(avg_total)):
 ax5.text(my_x[i], avg_total[i], '%.2f' % (avg_total[i]), ha='center', va='bottom',fontsize=10)
ax5.set_title(u'總分')
ax5.set_ylabel(u"平均分")
ax5.set_ylim(250, 400)
 
plt.savefig('avg.png')
plt.show()

這樣雖然能畫出來,但是需要手動寫每個subplot的代碼,代碼重復(fù)量太大,能不能用for循環(huán)的方式呢?

繼續(xù)嘗試,

先整理出for循環(huán)需要的不同參數(shù)

avg_scores = [] # 存儲各科成績,2維list
subjects = ['語文','數(shù)學(xué)','英語','綜合','總分'] #每個子圖的title
plot_pos = [321,322,323,324,313] # 每個子圖的位置
y_lims = [(60,130), (50,120), (30,100), (0,60), (200,400)] # 每個子圖的ylim參數(shù)

數(shù)據(jù)讀取的修改比較簡單,但是到畫圖時,如果還用 ax = plt.subplots(plot_pos[pos])方法的話,會報錯

Traceback (most recent call last):
 File "...xxx.py", line 66, in <module>
 b = ax.bar(my_x , y_data, width, tick_label=districts, align='center', color=new_colors) # 畫柱狀圖
AttributeError: 'tuple' object has no attribute 'bar'

搜索一番,沒找到合適的答案,想到可以換fig.add_subplot(plot_pos[pos]) 試一試,結(jié)果成功了,整體代碼如下

#!/usr/bin/env python
# -*- coding:utf-8 -*-
from xlrd import open_workbook as owb
import matplotlib.pyplot as plt
#import matplotlib.colors as colors
#from matplotlib.ticker import MultipleLocator, FormatStrFormatter, FuncFormatter
import numpy as np
 
districts=[] # 存儲各校名稱--對應(yīng)于excel表格的sheet名
total_stu=[] # 存儲各區(qū)學(xué)生總數(shù)
data_index = 0
new_colors = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728',
    '#9467bd', '#8c564b', '#e377c2', '#7f7f7f',
    '#bcbd22', '#17becf']
wb = owb('raw_data.xlsx') # 數(shù)據(jù)文件
active_districts = ['BY','二小','一小','WR','四小'] ## 填寫需要畫哪些學(xué)校的,名字需要與表格內(nèi)一致
avg_scores = [] # 存儲各科成績,2維list
subjects = ['語文','數(shù)學(xué)','英語','綜合','總分'] #每個子圖的title
plot_pos = [321,322,323,324,313] # 每個子圖的位置
y_lims = [(60,130), (50,120), (30,100), (0,60), (200,400)] # 每個子圖的ylim參數(shù)
 
'按頁數(shù)依次讀取表格數(shù)據(jù)作為Y軸參數(shù)'
for s in wb.sheets():
 #以下兩行用于控制是否全部繪圖,還是只繪選擇的區(qū)
 #if s.name not in active_districts:
  # continue
 print('Sheet: ', s.name)
 districts.append(s.name)
 avg_scores.append([])
 yuwen = 0
 shuxue = 0
 yingyu = 0
 zonghe = 0
 zongfen = 0
 total_student = 0
 for row in range(1,s.nrows):
  total_student += 1
  #tmp = s.cell(row,4).value
  yuwen = yuwen + (s.cell(row, 4).value - yuwen)/total_student # 語文
  shuxue = shuxue + (s.cell(row, 5).value - shuxue) / total_student # 數(shù)學(xué)
  yingyu = yingyu + (s.cell(row, 6).value - yingyu) / total_student # 英語
  zonghe = zonghe + (s.cell(row, 7).value - zonghe) / total_student # 綜合
  zongfen = zongfen + (s.cell(row, 8).value - zongfen) / total_student # 總分
 avg_scores[data_index].append(yuwen)
 avg_scores[data_index].append(shuxue)
 avg_scores[data_index].append(yingyu)
 avg_scores[data_index].append(zonghe)
 avg_scores[data_index].append(zongfen)
 data_index += 1
 
print('開始畫圖...')
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
figsize = 11,14
fig = plt.figure(figsize=figsize)
fig.suptitle('各校各科成績平均分統(tǒng)計',fontsize=18)
my_x=np.arange(len(districts))
width=0.5
 
print(avg_scores)
for pos in np.arange(len(plot_pos)):
 #ax = plt.subplots(plot_pos[pos])
 ax = fig.add_subplot(plot_pos[pos]) # 如果用ax = plt.subplots會報錯'tuple' object has no attribute 'bar'
 y_data = [x[pos] for x in avg_scores] # 按列取數(shù)據(jù)
 print(y_data)
 b = ax.bar(my_x , y_data, width, tick_label=districts, align='center', color=new_colors) # 畫柱狀圖
 for i in np.arange(len(y_data)):
  ax.text(my_x[i], y_data[i], '%.2f' % (y_data[i]), ha='center', va='bottom',fontsize=10) # 添加文字
 ax.set_title(subjects[pos])
 ax.set_ylabel(u"平均分")
 ax.set_ylim(y_lims[pos])
 
plt.savefig('jh_avg_auto.png')
plt.show()

和之前的結(jié)果一樣,能找到唯一一處細(xì)微差別嘛

以上這篇Python matplotlib讀取excel數(shù)據(jù)并用for循環(huán)畫多個子圖subplot操作就是小編分享給大家的全部內(nèi)容了,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • python實現(xiàn)批量監(jiān)聽頁面并發(fā)送郵件

    python實現(xiàn)批量監(jiān)聽頁面并發(fā)送郵件

    這篇文章主要為大家詳細(xì)介紹了python如何實現(xiàn)自動化批量監(jiān)聽頁面并發(fā)送郵件,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起學(xué)習(xí)一下
    2023-11-11
  • python基礎(chǔ)練習(xí)之幾個簡單的游戲

    python基礎(chǔ)練習(xí)之幾個簡單的游戲

    這篇文章主要介紹了python基礎(chǔ)練習(xí)之幾個簡單的游戲,具有一定參考價值,需要的朋友可以了解下。
    2017-11-11
  • 探尋python多線程ctrl+c退出問題解決方案

    探尋python多線程ctrl+c退出問題解決方案

    這篇文章主要講述了探尋python多線程ctrl-c退出問題解決方案,需要的朋友可以參考下
    2014-10-10
  • Python爬蟲爬取有道實現(xiàn)翻譯功能

    Python爬蟲爬取有道實現(xiàn)翻譯功能

    這篇文章主要介紹了Python爬蟲爬取有道實現(xiàn)翻譯功能,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下
    2020-11-11
  • Anaconda使用IDLE的實現(xiàn)示例

    Anaconda使用IDLE的實現(xiàn)示例

    這篇文章主要介紹了Anaconda使用IDLE的實現(xiàn)示例,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-09-09
  • python dataframe astype 字段類型轉(zhuǎn)換方法

    python dataframe astype 字段類型轉(zhuǎn)換方法

    下面小編就為大家分享一篇python dataframe astype 字段類型轉(zhuǎn)換方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-04-04
  • Python流程控制 while循環(huán)實現(xiàn)解析

    Python流程控制 while循環(huán)實現(xiàn)解析

    這篇文章主要介紹了Python流程控制 while循環(huán)實現(xiàn)解析,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下
    2019-09-09
  • Django URL傳遞參數(shù)的方法總結(jié)

    Django URL傳遞參數(shù)的方法總結(jié)

    這篇文章主要介紹了Django URL傳遞參數(shù)的方法總結(jié),需要的朋友可以參考下
    2016-08-08
  • Pycharm安裝各種庫(第三方庫)的兩種方法

    Pycharm安裝各種庫(第三方庫)的兩種方法

    這篇文章主要給大家介紹了關(guān)于Pycharm安裝各種庫(第三方庫)的兩種方法,Pycharm中通常需要安裝很多第三方庫,才可以使用相應(yīng)的拓展功能,需要的朋友可以參考下
    2024-01-01
  • 淺談python和C語言混編的幾種方式(推薦)

    淺談python和C語言混編的幾種方式(推薦)

    下面小編就為大家?guī)硪黄獪\談python和C語言混編的幾種方式(推薦)。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2017-09-09

最新評論