欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

使用OpenCV實現(xiàn)道路車輛計數(shù)的使用方法

 更新時間:2020年07月15日 08:59:21   作者:小白學(xué)視覺  
這篇文章主要介紹了使用OpenCV實現(xiàn)道路車輛計數(shù)的使用方法,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

今天,我們將一起探討如何基于計算機視覺實現(xiàn)道路交通計數(shù)。


在本教程中,我們將僅使用Python和OpenCV,并借助背景減除算法非常簡單地進(jìn)行運動檢測。

我們將從以下四個方面進(jìn)行介紹:

1. 用于物體檢測的背景減法算法主要思想。

2. OpenCV圖像過濾器。

3. 利用輪廓檢測物體。

4. 建立進(jìn)一步數(shù)據(jù)處理的結(jié)構(gòu)。

背景扣除算法

有許多不同的背景扣除算法,但是它們的主要思想都很簡單。

假設(shè)有一個房間的視頻,在某些幀上沒有人和寵物,那么此時的視頻基本為靜態(tài)的,我們將其稱為背景(background_layer)。因此要獲取在視頻上移動的對象,我們只需要:用當(dāng)前幀減去背景即可。

由于光照變化,人為移動物體,或者始終存在移動的人和寵物,我們將無法獲得靜態(tài)幀。在這種情況下,我們從視頻中選出一些圖像幀,如果絕大多數(shù)圖像幀中都具有某個相同的像素點,則此將像素作為background_layer中的一部分。

我們將使用MOG算法進(jìn)行背景扣除

原始幀

代碼如下所示:

import os
import logging
import logging.handlers
import random

import numpy as np
import skvideo.io
import cv2
import matplotlib.pyplot as plt

import utils
# without this some strange errors happen
cv2.ocl.setUseOpenCL(False)
random.seed(123)

# ============================================================================
IMAGE_DIR = "./out"
VIDEO_SOURCE = "input.mp4"
SHAPE = (720, 1280) # HxW
# ============================================================================

def train_bg_subtractor(inst, cap, num=500):
  '''
    BG substractor need process some amount of frames to start giving result
  '''
  print ('Training BG Subtractor...')
  i = 0
  for frame in cap:
    inst.apply(frame, None, 0.001)
    i += 1
    if i >= num:
      return cap

def main():
  log = logging.getLogger("main")

  # creting MOG bg subtractor with 500 frames in cache
  # and shadow detction
  bg_subtractor = cv2.createBackgroundSubtractorMOG2(
    history=500, detectShadows=True)

  # Set up image source
  # You can use also CV2, for some reason it not working for me
  cap = skvideo.io.vreader(VIDEO_SOURCE)

  # skipping 500 frames to train bg subtractor
  train_bg_subtractor(bg_subtractor, cap, num=500)

  frame_number = -1
  for frame in cap:
    if not frame.any():
      log.error("Frame capture failed, stopping...")
      break

    frame_number += 1
    utils.save_frame(frame, "./out/frame_%04d.png" % frame_number)
    fg_mask = bg_subtractor.apply(frame, None, 0.001)
    utils.save_frame(frame, "./out/fg_mask_%04d.png" % frame_number)
# ============================================================================

if __name__ == "__main__":
  log = utils.init_logging()

  if not os.path.exists(IMAGE_DIR):
    log.debug("Creating image directory `%s`...", IMAGE_DIR)
    os.makedirs(IMAGE_DIR)

  main()

處理后得到下面的前景圖像

去除背景后的前景圖像

我們可以看出前景圖像上有一些噪音,可以通過標(biāo)準(zhǔn)濾波技術(shù)可以將其消除。

濾波

針對我們現(xiàn)在的情況,我們將需要以下濾波函數(shù):Threshold、Erode、Dilate、Opening、Closing。

首先,我們使用“Closing”來移除區(qū)域中的間隙,然后使用“Opening”來移除個別獨立的像素點,然后使用“Dilate”進(jìn)行擴張以使對象變粗。代碼如下:

def filter_mask(img):
  kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
  # Fill any small holes
  closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
  # Remove noise
  opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
  # Dilate to merge adjacent blobs
  dilation = cv2.dilate(opening, kernel, iterations=2)
  # threshold
  th = dilation[dilation < 240] = 0
  return th

處理后的前景如下:

利用輪廓進(jìn)行物體檢測

我們將使用cv2.findContours函數(shù)對輪廓進(jìn)行檢測。我們在使用的時候可以選擇的參數(shù)為:

cv2.CV_RETR_EXTERNAL------僅獲取外部輪廓。

cv2.CV_CHAIN_APPROX_TC89_L1------使用Teh-Chin鏈逼近算法(更快)

代碼如下:

def get_centroid(x, y, w, h):
   x1 = int(w / 2)
   y1 = int(h / 2)
   cx = x + x1
   cy = y + y1
   return (cx, cy)
 
 def detect_vehicles(fg_mask, min_contour_width=35, min_contour_height=35):
   matches = []
   # finding external contours
   im, contours, hierarchy = cv2.findContours(
     fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
   # filtering by with, height
   for (i, contour) in enumerate(contours):
     (x, y, w, h) = cv2.boundingRect(contour)
     contour_valid = (w >= min_contour_width) and (
       h >= min_contour_height)
     if not contour_valid:
       continue
     # getting center of the bounding box
     centroid = get_centroid(x, y, w, h)
     matches.append(((x, y, w, h), centroid))
   return matches

建立數(shù)據(jù)處理框架

我們都知道在ML和CV中,沒有一個算法可以處理所有問題。即使存在這種算法,我們也不會使用它,因為它很難大規(guī)模有效。例如幾年前Netflix公司用300萬美元的獎金懸賞最佳電影推薦算法。有一個團隊完成這個任務(wù),但是他們的推薦算法無法大規(guī)模運行,因此其實對公司毫無用處。但是,Netflix公司仍獎勵了他們100萬美元。

接下來我們來建立解決當(dāng)前問題的框架,這樣可以使數(shù)據(jù)的處理更加方便

class PipelineRunner(object):
   '''
     Very simple pipline.
     Just run passed processors in order with passing context from one to 
     another.
     You can also set log level for processors.
   '''
   def __init__(self, pipeline=None, log_level=logging.DEBUG):
     self.pipeline = pipeline or []
     self.context = {}
     self.log = logging.getLogger(self.__class__.__name__)
     self.log.setLevel(log_level)
     self.log_level = log_level
     self.set_log_level()
   def set_context(self, data):
     self.context = data
   def add(self, processor):
     if not isinstance(processor, PipelineProcessor):
       raise Exception(
         'Processor should be an isinstance of PipelineProcessor.')
     processor.log.setLevel(self.log_level)
     self.pipeline.append(processor)
 
   def remove(self, name):
     for i, p in enumerate(self.pipeline):
       if p.__class__.__name__ == name:
         del self.pipeline[i]
         return True
     return False
 
   def set_log_level(self):
     for p in self.pipeline:
       p.log.setLevel(self.log_level)
 
   def run(self):
     for p in self.pipeline:
       self.context = p(self.context) 
     self.log.debug("Frame #%d processed.", self.context['frame_number'])
     return self.context
 
 class PipelineProcessor(object):
   '''
     Base class for processors.
   '''
   def __init__(self):
     self.log = logging.getLogger(self.__class__.__name__)

首先我們獲取一張?zhí)幚砥鬟\行順序的列表,讓每個處理器完成一部分工作,在案順序完成執(zhí)行以獲得最終結(jié)果。

我們首先創(chuàng)建輪廓檢測處理器。輪廓檢測處理器只需將前面的背景扣除,濾波和輪廓檢測部分合并在一起即可,代碼如下所示:

class ContourDetection(PipelineProcessor):
   '''
     Detecting moving objects.
     Purpose of this processor is to subtrac background, get moving objects
     and detect them with a cv2.findContours method, and then filter off-by
     width and height. 
     bg_subtractor - background subtractor isinstance.
     min_contour_width - min bounding rectangle width.
     min_contour_height - min bounding rectangle height.
     save_image - if True will save detected objects mask to file.
     image_dir - where to save images(must exist).    
   '''
 
   def __init__(self, bg_subtractor, min_contour_width=35, min_contour_height=35, save_image=False, image_dir='images'):
     super(ContourDetection, self).__init__()
     self.bg_subtractor = bg_subtractor
     self.min_contour_width = min_contour_width
     self.min_contour_height = min_contour_height
     self.save_image = save_image
     self.image_dir = image_dir
 
   def filter_mask(self, img, a=None):
     '''
       This filters are hand-picked just based on visual tests
     '''
     kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
     # Fill any small holes
     closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
     # Remove noise
     opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
     # Dilate to merge adjacent blobs
     dilation = cv2.dilate(opening, kernel, iterations=2)
     return dilation
 
   def detect_vehicles(self, fg_mask, context):
     matches = []
     # finding external contours
     im2, contours, hierarchy = cv2.findContours(
       fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
     for (i, contour) in enumerate(contours):
       (x, y, w, h) = cv2.boundingRect(contour)
       contour_valid = (w >= self.min_contour_width) and (
         h >= self.min_contour_height)
       if not contour_valid:
         continue
       centroid = utils.get_centroid(x, y, w, h)
       matches.append(((x, y, w, h), centroid))
     return matches
 
   def __call__(self, context):
     frame = context['frame'].copy()
     frame_number = context['frame_number']
     fg_mask = self.bg_subtractor.apply(frame, None, 0.001)
     # just thresholding values
     fg_mask[fg_mask < 240] = 0
     fg_mask = self.filter_mask(fg_mask, frame_number)
     if self.save_image:
       utils.save_frame(fg_mask, self.image_dir +
                "/mask_%04d.png" % frame_number, flip=False)
     context['objects'] = self.detect_vehicles(fg_mask, context)
     context['fg_mask'] = fg_mask
     return contex

現(xiàn)在,讓我們創(chuàng)建一個處理器,該處理器將找出不同的幀上檢測到的相同對象,創(chuàng)建路徑,并對到達(dá)出口區(qū)域的車輛進(jìn)行計數(shù)。代碼如下所示:

  '''
    Counting vehicles that entered in exit zone.

    Purpose of this class based on detected object and local cache create
    objects pathes and count that entered in exit zone defined by exit masks.

    exit_masks - list of the exit masks.
    path_size - max number of points in a path.
    max_dst - max distance between two points.
  '''

  def __init__(self, exit_masks=[], path_size=10, max_dst=30, x_weight=1.0, y_weight=1.0):
    super(VehicleCounter, self).__init__()

    self.exit_masks = exit_masks

    self.vehicle_count = 0
    self.path_size = path_size
    self.pathes = []
    self.max_dst = max_dst
    self.x_weight = x_weight
    self.y_weight = y_weight

  def check_exit(self, point):
    for exit_mask in self.exit_masks:
      try:
        if exit_mask[point[1]][point[0]] == 255:
          return True
      except:
        return True
    return False

  def __call__(self, context):
    objects = context['objects']
    context['exit_masks'] = self.exit_masks
    context['pathes'] = self.pathes
    context['vehicle_count'] = self.vehicle_count
    if not objects:
      return context

    points = np.array(objects)[:, 0:2]
    points = points.tolist()

    # add new points if pathes is empty
    if not self.pathes:
      for match in points:
        self.pathes.append([match])

    else:
      # link new points with old pathes based on minimum distance between
      # points
      new_pathes = []

      for path in self.pathes:
        _min = 999999
        _match = None
        for p in points:
          if len(path) == 1:
            # distance from last point to current
            d = utils.distance(p[0], path[-1][0])
          else:
            # based on 2 prev points predict next point and calculate
            # distance from predicted next point to current
            xn = 2 * path[-1][0][0] - path[-2][0][0]
            yn = 2 * path[-1][0][1] - path[-2][0][1]
            d = utils.distance(
              p[0], (xn, yn),
              x_weight=self.x_weight,
              y_weight=self.y_weight
            )

          if d < _min:
            _min = d
            _match = p

        if _match and _min <= self.max_dst:
          points.remove(_match)
          path.append(_match)
          new_pathes.append(path)

        # do not drop path if current frame has no matches
        if _match is None:
          new_pathes.append(path)

      self.pathes = new_pathes

      # add new pathes
      if len(points):
        for p in points:
          # do not add points that already should be counted
          if self.check_exit(p[1]):
            continue
          self.pathes.append([p])

    # save only last N points in path
    for i, _ in enumerate(self.pathes):
      self.pathes[i] = self.pathes[i][self.path_size * -1:]

    # count vehicles and drop counted pathes:
    new_pathes = []
    for i, path in enumerate(self.pathes):
      d = path[-2:]

      if (
        # need at list two points to count
        len(d) >= 2 and
        # prev point not in exit zone
        not self.check_exit(d[0][1]) and
        # current point in exit zone
        self.check_exit(d[1][1]) and
        # path len is bigger then min
        self.path_size <= len(path)
      ):
        self.vehicle_count += 1
      else:
        # prevent linking with path that already in exit zone
        add = True
        for p in path:
          if self.check_exit(p[1]):
            add = False
            break
        if add:
          new_pathes.append(path)

    self.pathes = new_pathes

    context['pathes'] = self.pathes
    context['objects'] = objects
    context['vehicle_count'] = self.vehicle_count

    self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)

    return context

上面的代碼有點復(fù)雜,因此讓我們一個部分一個部分的介紹一下。

上面的圖像中綠色的部分是出口區(qū)域。我們在這里對車輛進(jìn)行計數(shù),只有當(dāng)車輛移動的長度超過3個點我們才進(jìn)行計算

我們使用掩碼來解決這個問題,因為它比使用矢量算法有效且簡單得多。只需使用“二進(jìn)制和”即可選出車輛區(qū)域中點。設(shè)置方式如下:

EXIT_PTS = np.array([
   [[732, 720], [732, 590], [1280, 500], [1280, 720]],
   [[0, 400], [645, 400], [645, 0], [0, 0]]
 ])
 
 base = np.zeros(SHAPE + (3,), dtype='uint8')
 exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]

現(xiàn)在我們將檢測到的點鏈接起來。

對于第一幀圖像,我們將所有點均添加為新路徑。

接下來,如果len(path)== 1,我們在新檢測到的對象中找到與每條路徑最后一點距離最近的對象。

如果len(path)> 1,則使用路徑中的最后兩個點,即在同一條線上預(yù)測新點,并找到該點與當(dāng)前點之間的最小距離。

具有最小距離的點將添加到當(dāng)前路徑的末端并從列表中刪除。如果在此之后還剩下一些點,我們會將其添加為新路徑。這個過程中我們還會限制路徑中的點數(shù)。

new_pathes = []
 for path in self.pathes:
   _min = 999999
   _match = None
   for p in points:
     if len(path) == 1:
       # distance from last point to current
       d = utils.distance(p[0], path[-1][0])
     else:
       # based on 2 prev points predict next point and calculate
       # distance from predicted next point to current
       xn = 2 * path[-1][0][0] - path[-2][0][0]
       yn = 2 * path[-1][0][1] - path[-2][0][1]
       d = utils.distance(
         p[0], (xn, yn),
         x_weight=self.x_weight,
         y_weight=self.y_weight
       )
 
     if d < _min:
       _min = d
       _match = p
 
   if _match and _min <= self.max_dst:
     points.remove(_match)
     path.append(_match)
     new_pathes.append(path)
 
   # do not drop path if current frame has no matches
   if _match is None:
     new_pathes.append(path)
 
 self.pathes = new_pathes
 
 # add new pathes
 if len(points):
   for p in points:
     # do not add points that already should be counted
     if self.check_exit(p[1]):
       continue
     self.pathes.append([p])
 
 # save only last N points in path
 for i, _ in enumerate(self.pathes):
   self.pathes[i] = self.pathes[i][self.path_size * -1:]

現(xiàn)在,我們將嘗試計算進(jìn)入出口區(qū)域的車輛。為此,我們需獲取路徑中的最后2個點,并檢查len(path)是否應(yīng)大于限制。

# count vehicles and drop counted pathes:
  new_pathes = []
  for i, path in enumerate(self.pathes):
    d = path[-2:]
    if (
      # need at list two points to count
      len(d) >= 2 and
      # prev point not in exit zone
      not self.check_exit(d[0][1]) and
      # current point in exit zone
      self.check_exit(d[1][1]) and
      # path len is bigger then min
      self.path_size <= len(path)
    ):
      self.vehicle_count += 1
    else:
      # prevent linking with path that already in exit zone
      add = True
      for p in path:
        if self.check_exit(p[1]):
          add = False
          break
      if add:
        new_pathes.append(path)
  self.pathes = new_pathes
  
  context['pathes'] = self.pathes
  context['objects'] = objects
  context['vehicle_count'] = self.vehicle_count 
  self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)
  return context

最后兩個處理器是CSV編寫器,用于創(chuàng)建報告CSV文件,以及用于調(diào)試和精美圖片的可視化。

class CsvWriter(PipelineProcessor):
    def __init__(self, path, name, start_time=0, fps=15):
      super(CsvWriter, self).__init__()
      self.fp = open(os.path.join(path, name), 'w')
      self.writer = csv.DictWriter(self.fp, fieldnames=['time', 'vehicles'])
      self.writer.writeheader()
      self.start_time = start_time
      self.fps = fps
      self.path = path
      self.name = name
      self.prev = None
    def __call__(self, context):
      frame_number = context['frame_number']
      count = _count = context['vehicle_count']
      if self.prev:
        _count = count - self.prev
      time = ((self.start_time + int(frame_number / self.fps)) * 100
          + int(100.0 / self.fps) * (frame_number % self.fps))
      self.writer.writerow({'time': time, 'vehicles': _count})
      self.prev = count
      return context
  class Visualizer(PipelineProcessor):
    def __init__(self, save_image=True, image_dir='images'):
      super(Visualizer, self).__init__()
      self.save_image = save_image
      self.image_dir = image_dir
    def check_exit(self, point, exit_masks=[]):
      for exit_mask in exit_masks:
        if exit_mask[point[1]][point[0]] == 255:
          return True
      return False
    def draw_pathes(self, img, pathes):
      if not img.any():
        return
      for i, path in enumerate(pathes):
        path = np.array(path)[:, 1].tolist()
        for point in path:
          cv2.circle(img, point, 2, CAR_COLOURS[0], -1)
          cv2.polylines(img, [np.int32(path)], False, CAR_COLOURS[0], 1)
      return img
    def draw_boxes(self, img, pathes, exit_masks=[]):
      for (i, match) in enumerate(pathes):
        contour, centroid = match[-1][:2]
        if self.check_exit(centroid, exit_masks):
          continue
        x, y, w, h = contour
        cv2.rectangle(img, (x, y), (x + w - 1, y + h - 1),
               BOUNDING_BOX_COLOUR, 1)
        cv2.circle(img, centroid, 2, CENTROID_COLOUR, -1)
      return img
    def draw_ui(self, img, vehicle_count, exit_masks=[]):
      # this just add green mask with opacity to the image
      for exit_mask in exit_masks:
        _img = np.zeros(img.shape, img.dtype)
        _img[:, :] = EXIT_COLOR
        mask = cv2.bitwise_and(_img, _img, mask=exit_mask)
        cv2.addWeighted(mask, 1, img, 1, 0, img)
      # drawing top block with counts
      cv2.rectangle(img, (0, 0), (img.shape[1], 50), (0, 0, 0), cv2.FILLED)
      cv2.putText(img, ("Vehicles passed: {total} ".format(total=vehicle_count)), (30, 30),
            cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 1)
      return img
    def __call__(self, context):
      frame = context['frame'].copy()
      frame_number = context['frame_number']
      pathes = context['pathes']
      exit_masks = context['exit_masks']
      vehicle_count = context['vehicle_count']
      frame = self.draw_ui(frame, vehicle_count, exit_masks)
      frame = self.draw_pathes(frame, pathes)
      frame = self.draw_boxes(frame, pathes, exit_masks)
      utils.save_frame(frame, self.image_dir +
               "/processed_%04d.png" % frame_number)
      return context

結(jié)論

正如我們看到的那樣,它并不像許多人想象的那么難。但是,如果小伙伴運行腳本,小伙伴會發(fā)現(xiàn)此解決方案并不理想,存在前景對象存在重疊的問題,并且它也沒有按類型對車輛進(jìn)行分類。但是,當(dāng)相機有較好位置,例如位于道路正上方時,該算法具有很好的準(zhǔn)確性。

到此這篇關(guān)于使用OpenCV實現(xiàn)道路車輛計數(shù)的使用方法的文章就介紹到這了,更多相關(guān)OpenCV 道路車輛計數(shù)內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • Python  PYQT界面點擊按鈕隨機變色功能

    Python  PYQT界面點擊按鈕隨機變色功能

    遇到這樣的需求寫一個pyqt界面,要求界面有一個按鈕,每次點擊這個按鈕,就會生成一個10以內(nèi)的隨機數(shù),當(dāng)隨機數(shù)出現(xiàn)的時候,界面底色要變成對應(yīng)的顏色,同時要求隨機數(shù)會在界面中展示出來,并且按鈕和數(shù)字的顏色不會改變,下面給大家分享源代碼,一起看看吧
    2024-08-08
  • python中常見的幾種音頻數(shù)據(jù)讀取、保存方式總結(jié)

    python中常見的幾種音頻數(shù)據(jù)讀取、保存方式總結(jié)

    Python是一種非常適合進(jìn)行音頻處理和音頻分析的語言,因為它有許多強大的庫可以使用,下面這篇文章主要給大家介紹了關(guān)于python中常見的幾種音頻數(shù)據(jù)讀取、保存方式,文中通過代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2024-06-06
  • 基于Python制作三款起床鬧鐘的示例代碼

    基于Python制作三款起床鬧鐘的示例代碼

    每天上班最痛苦的事情就是早起早起早起!這是大部分上班族的痛苦,但是不上班又是不可能的啦,因為都是為了搞錢。本文用Python制作了三款有趣的鬧鐘,感興趣的可以學(xué)習(xí)一下
    2022-05-05
  • python如何與前端交互舉例詳解

    python如何與前端交互舉例詳解

    在Web開發(fā)中前端與后端之間的數(shù)據(jù)交互,下面這篇文章主要給大家介紹了關(guān)于python如何與前端交互的相關(guān)資料,文章通過代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2024-08-08
  • 解決python訓(xùn)練模型報錯:BrokenPipeError:?[Errno?32]?Broken?pipe

    解決python訓(xùn)練模型報錯:BrokenPipeError:?[Errno?32]?Broken?pipe

    這篇文章主要介紹了解決python訓(xùn)練模型報錯:BrokenPipeError:?[Errno?32]?Broken?pipe問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教
    2024-07-07
  • python設(shè)計并實現(xiàn)平面點類Point的源代碼

    python設(shè)計并實現(xiàn)平面點類Point的源代碼

    這篇文章主要介紹了python-設(shè)計并實現(xiàn)平面點類Point,定義一個平面點類Point,對其重載運算符關(guān)系運算符,關(guān)系運算以距離坐標(biāo)原點的遠(yuǎn)近作為基準(zhǔn),需要的朋友可以參考下
    2024-05-05
  • flask使用session保存登錄狀態(tài)及攔截未登錄請求代碼

    flask使用session保存登錄狀態(tài)及攔截未登錄請求代碼

    這篇文章主要介紹了flask使用session保存登錄狀態(tài)及攔截未登錄請求代碼,具有一定借鑒價值,需要的朋友可以參考下
    2018-01-01
  • TensorFlow實現(xiàn)MLP多層感知機模型

    TensorFlow實現(xiàn)MLP多層感知機模型

    這篇文章主要為大家詳細(xì)介紹了TensorFlow實現(xiàn)MLP多層感知機模型,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2018-03-03
  • 使用python svm實現(xiàn)直接可用的手寫數(shù)字識別

    使用python svm實現(xiàn)直接可用的手寫數(shù)字識別

    這篇文章主要介紹了使用python svm實現(xiàn)直接可用的手寫數(shù)字識別,現(xiàn)在網(wǎng)上很多代碼是良莠不齊,真是一言難盡,于是記錄一下,能夠運行成功并識別成功的一個源碼
    2021-08-08
  • 手把手教你在Pycharm中新建虛擬環(huán)境并使用(超詳細(xì)!)

    手把手教你在Pycharm中新建虛擬環(huán)境并使用(超詳細(xì)!)

    使用python開發(fā)項目通常都會創(chuàng)建一個虛擬環(huán)境,將項目依賴包安裝到虛擬環(huán)境中,避免一臺電腦上開發(fā)多個項目時依賴包版本號不兼容造成沖突,下面這篇文章主要給大家介紹了關(guān)于如何在Pycharm中新建虛擬環(huán)境并使用的相關(guān)資料,需要的朋友可以參考下
    2022-06-06

最新評論