python 使用遞歸的方式實(shí)現(xiàn)語義圖片分割功能
實(shí)現(xiàn)效果
第一張圖為原圖,其余的圖為分割后的圖形
代碼實(shí)現(xiàn):
# -*-coding:utf-8-*- import numpy as np import cv2 #---------------------------------------------------------------------- def obj_clip(img, foreground, border): result = [] height ,width = np.shape(img) visited = set() for h in range(height): for w in range(width): if img[h,w] == foreground and not (h,w) in visited: obj = visit(img, height, width, h, w, visited, foreground, border) result.append(obj) return result #---------------------------------------------------------------------- def visit(img, height, width, h, w, visited, foreground, border): visited.add((h,w)) result = [(h,w)] if w > 0 and not (h, w-1) in visited: if img[h, w-1] == foreground: result += visit(img, height, width, h, w-1, visited , foreground, border) elif border is not None and img[h, w-1] == border: result.append((h, w-1)) if w < width-1 and not (h, w+1) in visited: if img[h, w+1] == foreground: result += visit(img, height, width, h, w+1, visited, foreground, border) elif border is not None and img[h, w+1] == border: result.append((h, w+1)) if h > 0 and not (h-1, w) in visited: if img[h-1, w] == foreground: result += visit(img, height, width, h-1, w, visited, foreground, border) elif border is not None and img[h-1, w] == border: result.append((h-1, w)) if h < height-1 and not (h+1, w) in visited: if img[h+1, w] == foreground : result += visit(img, height, width, h+1, w, visited, foreground, border) elif border is not None and img[h+1, w] == border: result.append((h+1, w)) return result #---------------------------------------------------------------------- if __name__ == "__main__": import cv2 import sys sys.setrecursionlimit(100000) img = np.zeros([400,400]) cv2.rectangle(img, (10,10), (150,150), 1.0, 5) cv2.circle(img, (270,270), 70, 1.0, 5) cv2.line(img, (100,10), (100,150), 0.5, 5) #cv2.putText(img, "Martin",(200,200), 1.0, 5) cv2.imshow("img", img*255) cv2.waitKey(0) for obj in obj_clip(img, 1.0, 0.5): clip = np.zeros([400, 400]) for h, w in obj: clip[h, w] = 0.2 cv2.imshow("aa", clip*255) cv2.waitKey(0)
總結(jié)
到此這篇關(guān)于python 使用遞歸的方式實(shí)現(xiàn)語義圖片分割的文章就介紹到這了,更多相關(guān)python 語義圖片分割內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python中字符串,列表與字典的常用拼接方法總結(jié)
有時(shí)在數(shù)據(jù)處理時(shí),需要對數(shù)據(jù)進(jìn)行拼接處理,比如字符串的拼接、列表的拼接等,本文主要是介紹了字符串、列表、字典常用的拼接方法,希望對大家有所幫助2024-02-02使用python實(shí)現(xiàn)抓取騰訊視頻所有電影的爬蟲
這篇文章主要介紹了使用python實(shí)現(xiàn)抓取騰訊視頻所有電影的爬蟲,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-04-04selenium+python自動(dòng)化78-autoit參數(shù)化與批量上傳功能的實(shí)現(xiàn)
這篇文章主要介紹了selenium+python自動(dòng)化78-autoit參數(shù)化與批量上傳,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2021-03-03tensorflow通過模型文件,使用tensorboard查看其模型圖Graph方式
今天小編就為大家分享一篇tensorflow通過模型文件,使用tensorboard查看其模型圖Graph方式,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-01-01python3+dlib實(shí)現(xiàn)人臉識別和情緒分析
本文通過具體代碼不步驟給大家詳細(xì)講述了python3+dlib實(shí)現(xiàn)人臉識別以及情緒分析的方法,有需要的朋友參考下。2018-04-04