Python 爬蟲性能相關(guān)總結(jié)
這里我們通過(guò)請(qǐng)求網(wǎng)頁(yè)例子來(lái)一步步理解爬蟲性能
當(dāng)我們有一個(gè)列表存放了一些url需要我們獲取相關(guān)數(shù)據(jù),我們首先想到的是循環(huán)
簡(jiǎn)單的循環(huán)串行
這一種方法相對(duì)來(lái)說(shuō)是最慢的,因?yàn)橐粋€(gè)一個(gè)循環(huán),耗時(shí)是最長(zhǎng)的,是所有的時(shí)間總和
代碼如下:
import requests url_list = [ 'http://www.baidu.com', 'http://www.pythonsite.com', 'http://www.cnblogs.com/' ] for url in url_list: result = requests.get(url) print(result.text)
通過(guò)線程池
通過(guò)線程池的方式訪問,這樣整體的耗時(shí)是所有連接里耗時(shí)最久的那個(gè),相對(duì)循環(huán)來(lái)說(shuō)快了很多
import requests from concurrent.futures import ThreadPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(10) for url in url_list: #去線程池中獲取一個(gè)線程,線程去執(zhí)行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
線程池+回調(diào)函數(shù)
這里定義了一個(gè)回調(diào)函數(shù)callback
from concurrent.futures import ThreadPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ThreadPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async,url) #這里調(diào)用回調(diào)函數(shù) v.add_done_callback(callback) pool.shutdown()
通過(guò)進(jìn)程池
通過(guò)進(jìn)程池的方式訪問,同樣的也是取決于耗時(shí)最長(zhǎng)的,但是相對(duì)于線程來(lái)說(shuō),進(jìn)程需要耗費(fèi)更多的資源,同時(shí)這里是訪問url時(shí)IO操作,所以這里線程池比進(jìn)程池更好
import requests from concurrent.futures import ProcessPoolExecutor def fetch_request(url): result = requests.get(url) print(result.text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(10) for url in url_list: #去進(jìn)程池中獲取一個(gè)線程,子進(jìn)程程去執(zhí)行fetch_request方法 pool.submit(fetch_request,url) pool.shutdown(True)
進(jìn)程池+回調(diào)函數(shù)
這種方式和線程+回調(diào)函數(shù)的效果是一樣的,相對(duì)來(lái)說(shuō)開進(jìn)程比開線程浪費(fèi)資源
from concurrent.futures import ProcessPoolExecutor import requests def fetch_async(url): response = requests.get(url) return response def callback(future): print(future.result().text) url_list = [ 'http://www.baidu.com', 'http://www.bing.com', 'http://www.cnblogs.com/' ] pool = ProcessPoolExecutor(5) for url in url_list: v = pool.submit(fetch_async, url) # 這里調(diào)用回調(diào)函數(shù) v.add_done_callback(callback) pool.shutdown()
主流的單線程實(shí)現(xiàn)并發(fā)的幾種方式
- asyncio
- gevent
- Twisted
- Tornado
下面分別是這四種代碼的實(shí)現(xiàn)例子:
asyncio例子1:
import asyncio @asyncio.coroutine #通過(guò)這個(gè)裝飾器裝飾 def func1(): print('before...func1......') # 這里必須用yield from,并且這里必須是asyncio.sleep不能是time.sleep yield from asyncio.sleep(2) print('end...func1......') tasks = [func1(), func1()] loop = asyncio.get_event_loop() loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
上述的效果是同時(shí)會(huì)打印兩個(gè)before的內(nèi)容,然后等待2秒打印end內(nèi)容
這里asyncio并沒有提供我們發(fā)送http請(qǐng)求的方法,但是我們可以在yield from這里構(gòu)造http請(qǐng)求的方法。
asyncio例子2:
import asyncio @asyncio.coroutine def fetch_async(host, url='/'): print("----",host, url) reader, writer = yield from asyncio.open_connection(host, 80) #構(gòu)造請(qǐng)求頭內(nèi)容 request_header_content = """GET %s HTTP/1.0\r\nHost: %s\r\n\r\n""" % (url, host,) request_header_content = bytes(request_header_content, encoding='utf-8') #發(fā)送請(qǐng)求 writer.write(request_header_content) yield from writer.drain() text = yield from reader.read() print(host, url, text) writer.close() tasks = [ fetch_async('www.cnblogs.com', '/zhaof/'), fetch_async('dig.chouti.com', '/pic/show?nid=4073644713430508&lid=10273091') ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
asyncio + aiohttp 代碼例子:
import aiohttp import asyncio @asyncio.coroutine def fetch_async(url): print(url) response = yield from aiohttp.request('GET', url) print(url, response) response.close() tasks = [fetch_async('http://baidu.com/'), fetch_async('http://www.chouti.com/')] event_loop = asyncio.get_event_loop() results = event_loop.run_until_complete(asyncio.gather(*tasks)) event_loop.close()
asyncio+requests代碼例子
import asyncio import requests @asyncio.coroutine def fetch_async(func, *args): loop = asyncio.get_event_loop() future = loop.run_in_executor(None, func, *args) response = yield from future print(response.url, response.content) tasks = [ fetch_async(requests.get, 'http://www.cnblogs.com/wupeiqi/'), fetch_async(requests.get, 'http://dig.chouti.com/pic/show?nid=4073644713430508&lid=10273091') ] loop = asyncio.get_event_loop() results = loop.run_until_complete(asyncio.gather(*tasks)) loop.close()
gevent+requests代碼例子
import gevent import requests from gevent import monkey monkey.patch_all() def fetch_async(method, url, req_kwargs): print(method, url, req_kwargs) response = requests.request(method=method, url=url, **req_kwargs) print(response.url, response.content) # ##### 發(fā)送請(qǐng)求 ##### gevent.joinall([ gevent.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), gevent.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), gevent.spawn(fetch_async, method='get', url='https://github.com/', req_kwargs={}), ]) # ##### 發(fā)送請(qǐng)求(協(xié)程池控制最大協(xié)程數(shù)量) ##### # from gevent.pool import Pool # pool = Pool(None) # gevent.joinall([ # pool.spawn(fetch_async, method='get', url='https://www.python.org/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.yahoo.com/', req_kwargs={}), # pool.spawn(fetch_async, method='get', url='https://www.github.com/', req_kwargs={}), # ])
grequests代碼例子
這個(gè)是講requests+gevent進(jìn)行了封裝
import grequests request_list = [ grequests.get('http://httpbin.org/delay/1', timeout=0.001), grequests.get('http://fakedomain/'), grequests.get('http://httpbin.org/status/500') ] # ##### 執(zhí)行并獲取響應(yīng)列表 ##### # response_list = grequests.map(request_list) # print(response_list) # ##### 執(zhí)行并獲取響應(yīng)列表(處理異常) ##### # def exception_handler(request, exception): # print(request,exception) # print("Request failed") # response_list = grequests.map(request_list, exception_handler=exception_handler) # print(response_list)
twisted代碼例子
#getPage相當(dāng)于requets模塊,defer特殊的返回值,rector是做事件循環(huán) from twisted.web.client import getPage, defer from twisted.internet import reactor def all_done(arg): reactor.stop() def callback(contents): print(contents) deferred_list = [] url_list = ['http://www.bing.com', 'http://www.baidu.com', ] for url in url_list: deferred = getPage(bytes(url, encoding='utf8')) deferred.addCallback(callback) deferred_list.append(deferred) #這里就是進(jìn)就行一種檢測(cè),判斷所有的請(qǐng)求知否執(zhí)行完畢 dlist = defer.DeferredList(deferred_list) dlist.addBoth(all_done) reactor.run()
tornado代碼例子
from tornado.httpclient import AsyncHTTPClient from tornado.httpclient import HTTPRequest from tornado import ioloop def handle_response(response): """ 處理返回值內(nèi)容(需要維護(hù)計(jì)數(shù)器,來(lái)停止IO循環(huán)),調(diào)用 ioloop.IOLoop.current().stop() :param response: :return: """ if response.error: print("Error:", response.error) else: print(response.body) def func(): url_list = [ 'http://www.baidu.com', 'http://www.bing.com', ] for url in url_list: print(url) http_client = AsyncHTTPClient() http_client.fetch(HTTPRequest(url), handle_response) ioloop.IOLoop.current().add_callback(func) ioloop.IOLoop.current().start()
以上就是Python 爬蟲性能相關(guān)總結(jié)的詳細(xì)內(nèi)容,更多關(guān)于Python 爬蟲性能的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python實(shí)現(xiàn)把多維數(shù)組展開成DataFrame
今天小編就為大家分享一篇Python實(shí)現(xiàn)把多維數(shù)組展開成DataFrame,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-11-11Python?pandas按行、按列遍歷DataFrame的幾種方式
在python的DataFrame中,因?yàn)閿?shù)據(jù)中可以有多個(gè)行和列,而且每行代表一個(gè)數(shù)據(jù)樣本,我們可以將DataFrame看作數(shù)據(jù)表,那你知道如何按照數(shù)據(jù)表中的行遍歷嗎,下面這篇文章主要給大家介紹了關(guān)于Python?pandas按行、按列遍歷DataFrame的幾種方式,需要的朋友可以參考下2022-09-09Python腳本實(shí)現(xiàn)網(wǎng)卡流量監(jiān)控
這篇文章主要介紹了Python腳本實(shí)現(xiàn)網(wǎng)卡流量監(jiān)控,本文直接給出實(shí)現(xiàn)代碼,需要的朋友可以參考下2015-02-02python向xls寫入數(shù)據(jù)(包括合并,邊框,對(duì)齊,列寬)
這篇文章主要介紹了python向xls寫入數(shù)據(jù)(包括合并,邊框,對(duì)齊,列寬),幫助大家更好的利用python處理表格,感興趣的朋友可以了解下2021-02-02