欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python實現(xiàn)Canny及Hough算法代碼實例解析

 更新時間:2020年08月06日 14:37:52   作者:Moon小木  
這篇文章主要介紹了Python實現(xiàn)Canny與Hough算法代碼實例解析,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下

任務(wù)說明:編寫一個錢幣定位系統(tǒng),其不僅能夠檢測出輸入圖像中各個錢幣的邊緣,同時,還能給出各個錢幣的圓心坐標與半徑。

效果

代碼實現(xiàn)

Canny邊緣檢測:

# Author: Ji Qiu (BUPT)
# filename: my_canny.py

import cv2
import numpy as np


class Canny:

  def __init__(self, Guassian_kernal_size, img, HT_high_threshold, HT_low_threshold):
    '''
    :param Guassian_kernal_size: 高斯濾波器尺寸
    :param img: 輸入的圖片,在算法過程中改變
    :param HT_high_threshold: 滯后閾值法中的高閾值
    :param HT_low_threshold: 滯后閾值法中的低閾值
    '''
    self.Guassian_kernal_size = Guassian_kernal_size
    self.img = img
    self.y, self.x = img.shape[0:2]
    self.angle = np.zeros([self.y, self.x])
    self.img_origin = None
    self.x_kernal = np.array([[-1, 1]])
    self.y_kernal = np.array([[-1], [1]])
    self.HT_high_threshold = HT_high_threshold
    self.HT_low_threshold = HT_low_threshold

  def Get_gradient_img(self):
    '''
    計算梯度圖和梯度方向矩陣。
    :return: 生成的梯度圖
    '''
    print ('Get_gradient_img')
    
    new_img_x = np.zeros([self.y, self.x], dtype=np.float)
    new_img_y = np.zeros([self.y, self.x], dtype=np.float)
    for i in range(0, self.x):
      for j in range(0, self.y):
        if j == 0:
          new_img_y[j][i] = 1
        else:
          new_img_y[j][i] = np.sum(np.array([[self.img[j - 1][i]], [self.img[j][i]]]) * self.y_kernal)
        if i == 0:
          new_img_x[j][i] = 1
        else:
          new_img_x[j][i] = np.sum(np.array([self.img[j][i - 1], self.img[j][i]]) * self.x_kernal)

    gradient_img, self.angle = cv2.cartToPolar(new_img_x, new_img_y)#返回幅值和相位
    self.angle = np.tan(self.angle)
    self.img = gradient_img.astype(np.uint8)
    return self.img

  def Non_maximum_suppression (self):
    '''
    對生成的梯度圖進行非極大化抑制,將tan值的大小與正負結(jié)合,確定離散中梯度的方向。
    :return: 生成的非極大化抑制結(jié)果圖
    '''
    print ('Non_maximum_suppression')
    
    result = np.zeros([self.y, self.x])
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if abs(self.img[i][j]) <= 4:
          result[i][j] = 0
          continue
        elif abs(self.angle[i][j]) > 1:
          gradient2 = self.img[i - 1][j]
          gradient4 = self.img[i + 1][j]
          # g1 g2
          #  C
          #  g4 g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #  g2 g1
          #  C
          # g3 g4
          else:
            gradient1 = self.img[i - 1][j + 1]
            gradient3 = self.img[i + 1][j - 1]
        else:
          gradient2 = self.img[i][j - 1]
          gradient4 = self.img[i][j + 1]
          # g1
          # g2 C g4
          #   g3
          if self.angle[i][j] > 0:
            gradient1 = self.img[i - 1][j - 1]
            gradient3 = self.img[i + 1][j + 1]
          #   g3
          # g2 C g4
          # g1
          else:
            gradient3 = self.img[i - 1][j + 1]
            gradient1 = self.img[i + 1][j - 1]

        temp1 = abs(self.angle[i][j]) * gradient1 + (1 - abs(self.angle[i][j])) * gradient2
        temp2 = abs(self.angle[i][j]) * gradient3 + (1 - abs(self.angle[i][j])) * gradient4
        if self.img[i][j] >= temp1 and self.img[i][j] >= temp2:
          result[i][j] = self.img[i][j]
        else:
          result[i][j] = 0
    self.img = result
    return self.img

  def Hysteresis_thresholding(self):
    '''
    對生成的非極大化抑制結(jié)果圖進行滯后閾值法,用強邊延伸弱邊,這里的延伸方向為梯度的垂直方向,
    將比低閾值大比高閾值小的點置為高閾值大小,方向在離散點上的確定與非極大化抑制相似。
    :return: 滯后閾值法結(jié)果圖
    '''
    print ('Hysteresis_thresholding')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] >= self.HT_high_threshold:
          if abs(self.angle[i][j]) < 1:
            if self.img_origin[i - 1][j] > self.HT_low_threshold:
              self.img[i - 1][j] = self.HT_high_threshold
            if self.img_origin[i + 1][j] > self.HT_low_threshold:
              self.img[i + 1][j] = self.HT_high_threshold
            # g1 g2
            #  C
            #  g4 g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #  g2 g1
            #  C
            # g3 g4
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i - 1][j + 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
          else:
            if self.img_origin[i][j - 1] > self.HT_low_threshold:
              self.img[i][j - 1] = self.HT_high_threshold
            if self.img_origin[i][j + 1] > self.HT_low_threshold:
              self.img[i][j + 1] = self.HT_high_threshold
            # g1
            # g2 C g4
            #   g3
            if self.angle[i][j] < 0:
              if self.img_origin[i - 1][j - 1] > self.HT_low_threshold:
                self.img[i - 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j + 1] = self.HT_high_threshold
            #   g3
            # g2 C g4
            # g1
            else:
              if self.img_origin[i - 1][j + 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
              if self.img_origin[i + 1][j - 1] > self.HT_low_threshold:
                self.img[i + 1][j - 1] = self.HT_high_threshold
    return self.img

  def canny_algorithm(self):
    '''
    按照順序和步驟調(diào)用以上所有成員函數(shù)。
    :return: Canny 算法的結(jié)果
    '''
    self.img = cv2.GaussianBlur(self.img, (self.Guassian_kernal_size, self.Guassian_kernal_size), 0)
    self.Get_gradient_img()
    self.img_origin = self.img.copy()
    self.Non_maximum_suppression()
    self.Hysteresis_thresholding()
    return self.img

Hough變換

# Author: Ji Qiu (BUPT)
# filename: my_hough.py


import numpy as np
import math

class Hough_transform:
  def __init__(self, img, angle, step=5, threshold=135):
    '''

    :param img: 輸入的圖像
    :param angle: 輸入的梯度方向矩陣
    :param step: Hough 變換步長大小
    :param threshold: 篩選單元的閾值
    '''
    self.img = img
    self.angle = angle
    self.y, self.x = img.shape[0:2]
    self.radius = math.ceil(math.sqrt(self.y**2 + self.x**2))
    self.step = step
    self.vote_matrix = np.zeros([math.ceil(self.y / self.step), math.ceil(self.x / self.step), math.ceil(self.radius / self.step)])
    self.threshold = threshold
    self.circles = []

  def Hough_transform_algorithm(self):
    '''
    按照 x,y,radius 建立三維空間,根據(jù)圖片中邊上的點沿梯度方向?qū)臻g中的所有單
    元進行投票。每個點投出來結(jié)果為一折線。
    :return: 投票矩陣
    '''
    print ('Hough_transform_algorithm')
    
    for i in range(1, self.y - 1):
      for j in range(1, self.x - 1):
        if self.img[i][j] > 0:
          y = i
          x = j
          r = 0
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y + self.step * self.angle[i][j]
            x = x + self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          y = i - self.step * self.angle[i][j]
          x = j - self.step
          r = math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)
          while y < self.y and x < self.x and y >= 0 and x >= 0:
            self.vote_matrix[math.floor(y / self.step)][math.floor(x / self.step)][math.floor(r / self.step)] += 1
            y = y - self.step * self.angle[i][j]
            x = x - self.step
            r = r + math.sqrt((self.step * self.angle[i][j])**2 + self.step**2)

    return self.vote_matrix


  def Select_Circle(self):
    '''
    按照閾值從投票矩陣中篩選出合適的圓,并作極大化抑制,這里的非極大化抑制我采
    用的是鄰近點結(jié)果取平均值的方法,而非單純的取極大值。
    :return: None
    '''
    print ('Select_Circle')
    
    houxuanyuan = []
    for i in range(0, math.ceil(self.y / self.step)):
      for j in range(0, math.ceil(self.x / self.step)):
        for r in range(0, math.ceil(self.radius / self.step)):
          if self.vote_matrix[i][j][r] >= self.threshold:
            y = i * self.step + self.step / 2
            x = j * self.step + self.step / 2
            r = r * self.step + self.step / 2
            houxuanyuan.append((math.ceil(x), math.ceil(y), math.ceil(r)))
    if len(houxuanyuan) == 0:
      print("No Circle in this threshold.")
      return
    x, y, r = houxuanyuan[0]
    possible = []
    middle = []
    for circle in houxuanyuan:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        middle.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    middle.append((result[0], result[1], result[2]))

    def takeFirst(elem):
      return elem[0]

    middle.sort(key=takeFirst)
    x, y, r = middle[0]
    possible = []
    for circle in middle:
      if abs(x - circle[0]) <= 20 and abs(y - circle[1]) <= 20:
        possible.append([circle[0], circle[1], circle[2]])
      else:
        result = np.array(possible).mean(axis=0)
        print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
        self.circles.append((result[0], result[1], result[2]))
        possible.clear()
        x, y, r = circle
        possible.append([x, y, r])
    result = np.array(possible).mean(axis=0)
    print("Circle core: (%f, %f) Radius: %f" % (result[0], result[1], result[2]))
    self.circles.append((result[0], result[1], result[2]))
 

  def Calculate(self):
    '''
    按照算法順序調(diào)用以上成員函數(shù)
    :return: 圓形擬合結(jié)果圖,圓的坐標及半徑集合
    '''
    self.Hough_transform_algorithm()
    self.Select_Circle()
    return self.circles

調(diào)用

# Author: Ji Qiu (BUPT)
# filename: main.py

import cv2
import math
from my_hough import Hough_transform
from my_canny import Canny

# np.set_printoptions(threshold=np.inf)
Path = "picture_source/picture.jpg"
Save_Path = "picture_result/"
Reduced_ratio = 2
Guassian_kernal_size = 3
HT_high_threshold = 25
HT_low_threshold = 6
Hough_transform_step = 6
Hough_transform_threshold = 110

if __name__ == '__main__':
  img_gray = cv2.imread(Path, cv2.IMREAD_GRAYSCALE)
  img_RGB = cv2.imread(Path)
  y, x = img_gray.shape[0:2]
  img_gray = cv2.resize(img_gray, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  img_RGB = cv2.resize(img_RGB, (int(x / Reduced_ratio), int(y / Reduced_ratio)))
  # canny takes about 40 seconds
  print ('Canny ...')
  canny = Canny(Guassian_kernal_size, img_gray, HT_high_threshold, HT_low_threshold)
  canny.canny_algorithm()
  cv2.imwrite(Save_Path + "canny_result.jpg", canny.img)
  
  # hough takes about 30 seconds
  print ('Hough ...')
  Hough = Hough_transform(canny.img, canny.angle, Hough_transform_step, Hough_transform_threshold)
  circles = Hough.Calculate()
  for circle in circles:
    cv2.circle(img_RGB, (math.ceil(circle[0]), math.ceil(circle[1])), math.ceil(circle[2]), (28, 36, 237), 2)
  cv2.imwrite(Save_Path + "hough_result.jpg", img_RGB)
  print ('Finished!')

運行效果

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python實現(xiàn)字符串的逆序 C++字符串逆序算法

    Python實現(xiàn)字符串的逆序 C++字符串逆序算法

    這篇文章主要為大家詳細介紹了Python實現(xiàn)字符串的逆序,C++將字符串逆序輸出,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2018-04-04
  • Python導(dǎo)入模塊時遇到的錯誤分析

    Python導(dǎo)入模塊時遇到的錯誤分析

    這篇文章主要給大家詳細解釋了在Python處理導(dǎo)入模塊的時候出現(xiàn)錯誤以及具體的情況分析,非常的詳盡,有需要的小伙伴可以參考下
    2017-08-08
  • Python圖形化界面基礎(chǔ)篇之如何使用彈出窗口和對話框

    Python圖形化界面基礎(chǔ)篇之如何使用彈出窗口和對話框

    對于Python程序員來說,處理彈出窗口似乎并不是一個常見的任務(wù),這篇文章主要給大家介紹了關(guān)于Python圖形化界面基礎(chǔ)篇之如何使用彈出窗口和對話框的相關(guān)資料,需要的朋友可以參考下
    2024-03-03
  • python各類經(jīng)緯度轉(zhuǎn)換的實例代碼

    python各類經(jīng)緯度轉(zhuǎn)換的實例代碼

    這篇文章主要介紹了python各類經(jīng)緯度轉(zhuǎn)換的實例代碼,非常不錯,具有一定的參考借鑒價值,具有一定的參考借鑒價值,需要的朋友可以參考下
    2019-08-08
  • LeetCode189輪轉(zhuǎn)數(shù)組python示例

    LeetCode189輪轉(zhuǎn)數(shù)組python示例

    這篇文章主要為大家介紹了LeetCode189輪轉(zhuǎn)數(shù)組python解法示例,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪
    2022-08-08
  • 基于Python制作公交車站查詢系統(tǒng)

    基于Python制作公交車站查詢系統(tǒng)

    這篇文章主要介紹了如何利用Python制作一個簡單的公交車站查詢系統(tǒng)。文中的示例代碼講解詳細,對我們學(xué)習(xí)Python有一定的幫助,需要的可以參考一下
    2022-01-01
  • 如何在C++中調(diào)用Python

    如何在C++中調(diào)用Python

    雖然現(xiàn)在Python編程語言十分的火爆,但是實際上非要用一門語言去完成所有的任務(wù),并不是說不可以,而是不合適。在一些特定的、對于性能要求比較高的場景,還是需要用到傳統(tǒng)的C++來進行編程的。本文將用C++的代碼去調(diào)用Python函數(shù)中實現(xiàn)的一些功能
    2021-05-05
  • Python 面向?qū)ο缶幊痰娜筇匦灾^承

    Python 面向?qū)ο缶幊痰娜筇匦灾^承

    繼承也是面向?qū)ο缶幊倘筇匦灾?,本篇文章我們就來學(xué)習(xí)Python中繼承的用處、使用場景及用與不用的區(qū)別,感興趣的朋友一起來閱讀下面文章吧
    2021-09-09
  • Pandas.DataFrame轉(zhuǎn)置的實現(xiàn)

    Pandas.DataFrame轉(zhuǎn)置的實現(xiàn)

    這篇文章主要介紹了Pandas.DataFrame轉(zhuǎn)置的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-03-03
  • Python對excel的基本操作方法

    Python對excel的基本操作方法

    這篇文章主要介紹了Python對excel的基本操作,本文給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2021-02-02

最新評論