Python爬取股票信息,并可視化數(shù)據(jù)的示例
前言
截止2019年年底我國股票投資者數(shù)量為15975.24萬戶, 如此多的股民熱衷于炒股,首先拋開炒股技術(shù)不說, 那么多股票數(shù)據(jù)是不是非常難找, 找到之后是不是看著密密麻麻的數(shù)據(jù)是不是頭都大了?
今天帶大家爬取雪球平臺的股票數(shù)據(jù), 并且實現(xiàn)數(shù)據(jù)可視化
先看下效果圖
基本環(huán)境配置
- python 3.6
- pycharm
- requests
- csv
- time
目標(biāo)地址
爬蟲代碼
請求網(wǎng)頁
import requests url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json()
解析數(shù)據(jù)
data_list = html_data['data']['list'] for i in data_list: dit = {} dit['股票代碼'] = i['symbol'] dit['股票名字'] = i['name'] dit['當(dāng)前價'] = i['current'] dit['漲跌額'] = i['chg'] dit['漲跌幅/%'] = i['percent'] dit['年初至今/%'] = i['current_year_percent'] dit['成交量'] = i['volume'] dit['成交額'] = i['amount'] dit['換手率/%'] = i['turnover_rate'] dit['市盈率TTM'] = i['pe_ttm'] dit['股息率/%'] = i['dividend_yield'] dit['市值'] = i['market_capital'] print(dit)
保存數(shù)據(jù)
import csv f = open('股票數(shù)據(jù).csv', mode='a', encoding='utf-8-sig', newline='') csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名字', '當(dāng)前價', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值']) csv_writer.writeheader() csv_writer.writerow(dit) f.close()
完整代碼
import pprint import requests import time import csv f = open('股票數(shù)據(jù).csv', mode='a', encoding='utf-8-sig', newline='') csv_writer = csv.DictWriter(f, fieldnames=['股票代碼', '股票名稱', '當(dāng)前價', '漲跌額', '漲跌幅/%', '年初至今/%', '成交量', '成交額', '換手率/%', '市盈率TTM', '股息率/%', '市值']) csv_writer.writeheader() for page in range(1, 53): time.sleep(1) url = 'https://xueqiu.com/service/v5/stock/screener/quote/list' date = round(time.time()*1000) params = { 'page': '{}'.format(page), 'size': '30', 'order': 'desc', 'order_by': 'amount', 'exchange': 'CN', 'market': 'CN', 'type': 'sha', '_': '{}'.format(date), } cookies = { 'Cookie': 'acw_tc=2760824216007592794858354eb971860e97492387fac450a734dbb6e89afb; xq_a_token=636e3a77b735ce64db9da253b75cbf49b2518316; xqat=636e3a77b735ce64db9da253b75cbf49b2518316; xq_r_token=91c25a6a9038fa2532dd45b2dd9b573a35e28cfd; xq_id_token=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1aWQiOi0xLCJpc3MiOiJ1YyIsImV4cCI6MTYwMjY0MzAyMCwiY3RtIjoxNjAwNzU5MjY3OTEwLCJjaWQiOiJkOWQwbjRBWnVwIn0.bengzIpmr0io9f44NJdHuc_6g9EIjtrSlMgnqwKSWVzI4syI_yIH1F-GJfK4bTelWzDirufjWMW9DfDMyMkI75TpJqiwIq8PRsa1bQ7IuCXLbN71ebsiTOGfA5OsWSPQOdVXQA0goqC4yvXLOk5KgC5FQIzZut0N4uaRDLsq7vhmcb8CBw504tCZnbIJTfGGIFIfw7TkwuUCXGY6Q-0mlOG8U4EUTcOCuxN87Ej_OIKnXN8cTSVh7XW6SFxOgU6p3yUXDgvS04rt-nFewpNNqfbGAKk965N-HJ9Mq8E52BRJ3rt_ndYP8yCaeQ6xSsz5P2mNlKwNFe9EQeltim_mDg; u=501600759279498; device_id=24700f9f1986800ab4fcc880530dd0ed; Hm_lvt_1db88642e346389874251b5a1eded6e3=1600759286; _ga=GA1.2.2049292015.1600759388; _gid=GA1.2.391362708.1600759388; s=du11eogy79; __utma=1.2049292015.1600759388.1600759397.1600759397.1; __utmc=1; __utmz=1.1600759397.1.1.utmcsr=(direct)|utmccn=(direct)|utmcmd=(none); __utmt=1; __utmb=1.3.10.1600759397; Hm_lpvt_1db88642e346389874251b5a1eded6e3=1600759448' } headers = { 'Host': 'xueqiu.com', 'Pragma': 'no-cache', 'Referer': 'https://xueqiu.com/hq', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/81.0.4044.138 Safari/537.36' } response = requests.get(url=url, params=params, headers=headers, cookies=cookies) html_data = response.json() data_list = html_data['data']['list'] for i in data_list: dit = {} dit['股票代碼'] = i['symbol'] dit['股票名稱'] = i['name'] dit['當(dāng)前價'] = i['current'] dit['漲跌額'] = i['chg'] dit['漲跌幅/%'] = i['percent'] dit['年初至今/%'] = i['current_year_percent'] dit['成交量'] = i['volume'] dit['成交額'] = i['amount'] dit['換手率/%'] = i['turnover_rate'] dit['市盈率TTM'] = i['pe_ttm'] dit['股息率/%'] = i['dividend_yield'] dit['市值'] = i['market_capital'] csv_writer.writerow(dit) print(dit) f.close()
數(shù)據(jù)分析代碼
c = ( Bar() .add_xaxis(list(df2['股票名稱'].values)) .add_yaxis("股票成交量情況", list(df2['成交量'].values)) .set_global_opts( title_opts=opts.TitleOpts(title="成交量圖表 - Volume chart"), datazoom_opts=opts.DataZoomOpts(), ) .render("data.html") )
以上就是Python爬取股票信息,并可視化數(shù)據(jù)的示例的詳細(xì)內(nèi)容,更多關(guān)于Python爬取股票信息的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python實現(xiàn)PPT/PPTX批量轉(zhuǎn)換成PDF
這篇文章主要為大家詳細(xì)介紹了如何使用Python將PowerPoint演示文稿(PPT、PPTX等)轉(zhuǎn)換為PDF文件,使演示內(nèi)容能夠在更多的設(shè)備上展示,感興趣的小伙伴可以了解下2024-01-01python自動定時任務(wù)schedule庫的使用方法
當(dāng)你需要在 Python 中定期執(zhí)行任務(wù)時,schedule 庫是一個非常實用的工具,它可以幫助你自動化定時任務(wù),本文給大家介紹了python自動定時任務(wù)schedule庫的使用方法,需要的朋友可以參考下2024-02-02python 實現(xiàn)多維數(shù)組轉(zhuǎn)向量
今天小編就為大家分享一篇python 實現(xiàn)多維數(shù)組轉(zhuǎn)向量,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-11-11Ubuntu 14.04+Django 1.7.1+Nginx+uwsgi部署教程
django+uwsgi的部署實在是太蛋疼了.網(wǎng)上已有的教程似乎有新版本的兼容問題。最后跑到uwsgi官網(wǎng)上找的教程終于跑通了.. 不過官網(wǎng)的教程似乎有引導(dǎo)教學(xué)性質(zhì),部署的時候就顯得很繞彎路,在這里記錄下來精簡內(nèi)容2014-11-11對tensorflow中tf.nn.conv1d和layers.conv1d的區(qū)別詳解
今天小編就為大家分享一篇對tensorflow中tf.nn.conv1d和layers.conv1d的區(qū)別詳解,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02Python3.6簡單操作Mysql數(shù)據(jù)庫
這篇文章主要為大家詳細(xì)介紹了Python3.6簡單操作Mysql數(shù)據(jù)庫,具有一定的參考價值,感興趣的小伙伴們可以參考一下2017-09-09