如何用Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)(Multi-layer Perceptron)
代碼
import numpy as np # 各種激活函數(shù)及導(dǎo)數(shù) def sigmoid(x): return 1 / (1 + np.exp(-x)) def dsigmoid(y): return y * (1 - y) def tanh(x): return np.tanh(x) def dtanh(y): return 1.0 - y ** 2 def relu(y): tmp = y.copy() tmp[tmp < 0] = 0 return tmp def drelu(x): tmp = x.copy() tmp[tmp >= 0] = 1 tmp[tmp < 0] = 0 return tmp class MLPClassifier(object): """多層感知機(jī),BP 算法訓(xùn)練""" def __init__(self, layers, activation='tanh', epochs=20, batch_size=1, learning_rate=0.01): """ :param layers: 網(wǎng)絡(luò)層結(jié)構(gòu) :param activation: 激活函數(shù) :param epochs: 迭代輪次 :param learning_rate: 學(xué)習(xí)率 """ self.epochs = epochs self.learning_rate = learning_rate self.layers = [] self.weights = [] self.batch_size = batch_size for i in range(0, len(layers) - 1): weight = np.random.random((layers[i], layers[i + 1])) layer = np.ones(layers[i]) self.layers.append(layer) self.weights.append(weight) self.layers.append(np.ones(layers[-1])) self.thresholds = [] for i in range(1, len(layers)): threshold = np.random.random(layers[i]) self.thresholds.append(threshold) if activation == 'tanh': self.activation = tanh self.dactivation = dtanh elif activation == 'sigomid': self.activation = sigmoid self.dactivation = dsigmoid elif activation == 'relu': self.activation = relu self.dactivation = drelu def fit(self, X, y): """ :param X_: shape = [n_samples, n_features] :param y: shape = [n_samples] :return: self """ for _ in range(self.epochs * (X.shape[0] // self.batch_size)): i = np.random.choice(X.shape[0], self.batch_size) # i = np.random.randint(X.shape[0]) self.update(X[i]) self.back_propagate(y[i]) def predict(self, X): """ :param X: shape = [n_samples, n_features] :return: shape = [n_samples] """ self.update(X) return self.layers[-1].copy() def update(self, inputs): self.layers[0] = inputs for i in range(len(self.weights)): next_layer_in = self.layers[i] @ self.weights[i] - self.thresholds[i] self.layers[i + 1] = self.activation(next_layer_in) def back_propagate(self, y): errors = y - self.layers[-1] gradients = [(self.dactivation(self.layers[-1]) * errors).sum(axis=0)] self.thresholds[-1] -= self.learning_rate * gradients[-1] for i in range(len(self.weights) - 1, 0, -1): tmp = np.sum(gradients[-1] @ self.weights[i].T * self.dactivation(self.layers[i]), axis=0) gradients.append(tmp) self.thresholds[i - 1] -= self.learning_rate * gradients[-1] / self.batch_size gradients.reverse() for i in range(len(self.weights)): tmp = np.mean(self.layers[i], axis=0) self.weights[i] += self.learning_rate * tmp.reshape((-1, 1)) * gradients[i]
測試代碼
import sklearn.datasets import numpy as np def plot_decision_boundary(pred_func, X, y, title=None): """分類器畫圖函數(shù),可畫出樣本點(diǎn)和決策邊界 :param pred_func: predict函數(shù) :param X: 訓(xùn)練集X :param y: 訓(xùn)練集Y :return: None """ # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show() def test_mlp(): X, y = sklearn.datasets.make_moons(200, noise=0.20) y = y.reshape((-1, 1)) n = MLPClassifier((2, 3, 1), activation='tanh', epochs=300, learning_rate=0.01) n.fit(X, y) def tmp(X): sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0) ans = sign(n.predict(X)) return ans plot_decision_boundary(tmp, X, y, 'Neural Network')
效果
更多機(jī)器學(xué)習(xí)代碼,請?jiān)L問 https://github.com/WiseDoge/plume
以上就是如何用Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)(Multi-layer Perceptron)的詳細(xì)內(nèi)容,更多關(guān)于Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)的資料請關(guān)注腳本之家其它相關(guān)文章!
- Python利用全連接神經(jīng)網(wǎng)絡(luò)求解MNIST問題詳解
- python神經(jīng)網(wǎng)絡(luò)pytorch中BN運(yùn)算操作自實(shí)現(xiàn)
- python神經(jīng)網(wǎng)絡(luò)Keras常用學(xué)習(xí)率衰減匯總
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?small模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)Keras實(shí)現(xiàn)GRU及其參數(shù)量
- python神經(jīng)網(wǎng)絡(luò)Keras實(shí)現(xiàn)LSTM及其參數(shù)量詳解
- Python?實(shí)現(xiàn)一個(gè)全連接的神經(jīng)網(wǎng)絡(luò)
相關(guān)文章
SublimeText 2編譯python出錯(cuò)的解決方法(The system cannot find the file
這篇文章主要介紹了SublimeText 2編譯python報(bào)The system cannot find the file specified錯(cuò)誤的解決方法,大家參考使用吧2013-11-11PyTorch 導(dǎo)數(shù)應(yīng)用的使用教程
這篇文章主要介紹了PyTorch 導(dǎo)數(shù)應(yīng)用的使用教程,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-08-08pytorch中nn.Flatten()函數(shù)詳解及示例
nn.Flatten是一個(gè)類,而torch.flatten()則是一個(gè)函數(shù),下面這篇文章主要給大家介紹了關(guān)于pytorch中nn.Flatten()函數(shù)詳解及示例的相關(guān)資料,需要的朋友可以參考下2023-01-01PyCharm+Pipenv虛擬環(huán)境開發(fā)和依賴管理的教程詳解
這篇文章主要介紹了PyCharm+Pipenv虛擬環(huán)境作開發(fā)和依賴管理的教程,本文通過圖文并茂的形式給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-04-04Python實(shí)現(xiàn)圖算法、堆操作和并查集代碼實(shí)例
這篇文章主要介紹了Python實(shí)現(xiàn)圖算法、堆操作和并查集代碼實(shí)例,圖算法、堆操作和并查集是計(jì)算機(jī)科學(xué)中常用的數(shù)據(jù)結(jié)構(gòu)和算法,它們在解決各種實(shí)際問題中具有重要的應(yīng)用價(jià)值,需要的朋友可以參考下2023-08-08Python數(shù)據(jù)分析的八種處理缺失值方法詳解
缺失值可能是數(shù)據(jù)科學(xué)中最不受歡迎的值,然而,它們總是在身邊。忽略缺失值也是不合理的,因此我們需要找到有效且適當(dāng)?shù)靥幚硭鼈兊姆椒?/div> 2021-11-11最新評論