如何用Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)(Multi-layer Perceptron)
代碼
import numpy as np
# 各種激活函數(shù)及導(dǎo)數(shù)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
def dsigmoid(y):
return y * (1 - y)
def tanh(x):
return np.tanh(x)
def dtanh(y):
return 1.0 - y ** 2
def relu(y):
tmp = y.copy()
tmp[tmp < 0] = 0
return tmp
def drelu(x):
tmp = x.copy()
tmp[tmp >= 0] = 1
tmp[tmp < 0] = 0
return tmp
class MLPClassifier(object):
"""多層感知機(jī),BP 算法訓(xùn)練"""
def __init__(self,
layers,
activation='tanh',
epochs=20, batch_size=1, learning_rate=0.01):
"""
:param layers: 網(wǎng)絡(luò)層結(jié)構(gòu)
:param activation: 激活函數(shù)
:param epochs: 迭代輪次
:param learning_rate: 學(xué)習(xí)率
"""
self.epochs = epochs
self.learning_rate = learning_rate
self.layers = []
self.weights = []
self.batch_size = batch_size
for i in range(0, len(layers) - 1):
weight = np.random.random((layers[i], layers[i + 1]))
layer = np.ones(layers[i])
self.layers.append(layer)
self.weights.append(weight)
self.layers.append(np.ones(layers[-1]))
self.thresholds = []
for i in range(1, len(layers)):
threshold = np.random.random(layers[i])
self.thresholds.append(threshold)
if activation == 'tanh':
self.activation = tanh
self.dactivation = dtanh
elif activation == 'sigomid':
self.activation = sigmoid
self.dactivation = dsigmoid
elif activation == 'relu':
self.activation = relu
self.dactivation = drelu
def fit(self, X, y):
"""
:param X_: shape = [n_samples, n_features]
:param y: shape = [n_samples]
:return: self
"""
for _ in range(self.epochs * (X.shape[0] // self.batch_size)):
i = np.random.choice(X.shape[0], self.batch_size)
# i = np.random.randint(X.shape[0])
self.update(X[i])
self.back_propagate(y[i])
def predict(self, X):
"""
:param X: shape = [n_samples, n_features]
:return: shape = [n_samples]
"""
self.update(X)
return self.layers[-1].copy()
def update(self, inputs):
self.layers[0] = inputs
for i in range(len(self.weights)):
next_layer_in = self.layers[i] @ self.weights[i] - self.thresholds[i]
self.layers[i + 1] = self.activation(next_layer_in)
def back_propagate(self, y):
errors = y - self.layers[-1]
gradients = [(self.dactivation(self.layers[-1]) * errors).sum(axis=0)]
self.thresholds[-1] -= self.learning_rate * gradients[-1]
for i in range(len(self.weights) - 1, 0, -1):
tmp = np.sum(gradients[-1] @ self.weights[i].T * self.dactivation(self.layers[i]), axis=0)
gradients.append(tmp)
self.thresholds[i - 1] -= self.learning_rate * gradients[-1] / self.batch_size
gradients.reverse()
for i in range(len(self.weights)):
tmp = np.mean(self.layers[i], axis=0)
self.weights[i] += self.learning_rate * tmp.reshape((-1, 1)) * gradients[i]
測(cè)試代碼
import sklearn.datasets
import numpy as np
def plot_decision_boundary(pred_func, X, y, title=None):
"""分類(lèi)器畫(huà)圖函數(shù),可畫(huà)出樣本點(diǎn)和決策邊界
:param pred_func: predict函數(shù)
:param X: 訓(xùn)練集X
:param y: 訓(xùn)練集Y
:return: None
"""
# Set min and max values and give it some padding
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
h = 0.01
# Generate a grid of points with distance h between them
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
# Predict the function value for the whole gid
Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
# Plot the contour and training examples
plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral)
if title:
plt.title(title)
plt.show()
def test_mlp():
X, y = sklearn.datasets.make_moons(200, noise=0.20)
y = y.reshape((-1, 1))
n = MLPClassifier((2, 3, 1), activation='tanh', epochs=300, learning_rate=0.01)
n.fit(X, y)
def tmp(X):
sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0)
ans = sign(n.predict(X))
return ans
plot_decision_boundary(tmp, X, y, 'Neural Network')
效果


更多機(jī)器學(xué)習(xí)代碼,請(qǐng)?jiān)L問(wèn) https://github.com/WiseDoge/plume
以上就是如何用Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)(Multi-layer Perceptron)的詳細(xì)內(nèi)容,更多關(guān)于Python 實(shí)現(xiàn)全連接神經(jīng)網(wǎng)絡(luò)的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
- Python利用全連接神經(jīng)網(wǎng)絡(luò)求解MNIST問(wèn)題詳解
- python神經(jīng)網(wǎng)絡(luò)pytorch中BN運(yùn)算操作自實(shí)現(xiàn)
- python神經(jīng)網(wǎng)絡(luò)Keras常用學(xué)習(xí)率衰減匯總
- python神經(jīng)網(wǎng)絡(luò)MobileNetV3?small模型的復(fù)現(xiàn)詳解
- python神經(jīng)網(wǎng)絡(luò)Keras實(shí)現(xiàn)GRU及其參數(shù)量
- python神經(jīng)網(wǎng)絡(luò)Keras實(shí)現(xiàn)LSTM及其參數(shù)量詳解
- Python?實(shí)現(xiàn)一個(gè)全連接的神經(jīng)網(wǎng)絡(luò)
相關(guān)文章
SublimeText 2編譯python出錯(cuò)的解決方法(The system cannot find the file
這篇文章主要介紹了SublimeText 2編譯python報(bào)The system cannot find the file specified錯(cuò)誤的解決方法,大家參考使用吧2013-11-11
PyTorch 導(dǎo)數(shù)應(yīng)用的使用教程
這篇文章主要介紹了PyTorch 導(dǎo)數(shù)應(yīng)用的使用教程,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-08-08
pytorch中nn.Flatten()函數(shù)詳解及示例
nn.Flatten是一個(gè)類(lèi),而torch.flatten()則是一個(gè)函數(shù),下面這篇文章主要給大家介紹了關(guān)于pytorch中nn.Flatten()函數(shù)詳解及示例的相關(guān)資料,需要的朋友可以參考下2023-01-01
PyCharm+Pipenv虛擬環(huán)境開(kāi)發(fā)和依賴(lài)管理的教程詳解
這篇文章主要介紹了PyCharm+Pipenv虛擬環(huán)境作開(kāi)發(fā)和依賴(lài)管理的教程,本文通過(guò)圖文并茂的形式給大家介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2020-04-04
Python實(shí)現(xiàn)圖算法、堆操作和并查集代碼實(shí)例
這篇文章主要介紹了Python實(shí)現(xiàn)圖算法、堆操作和并查集代碼實(shí)例,圖算法、堆操作和并查集是計(jì)算機(jī)科學(xué)中常用的數(shù)據(jù)結(jié)構(gòu)和算法,它們?cè)诮鉀Q各種實(shí)際問(wèn)題中具有重要的應(yīng)用價(jià)值,需要的朋友可以參考下2023-08-08
Python 專(zhuān)題四 文件基礎(chǔ)知識(shí)
本文主要講述了Python文件基礎(chǔ)知識(shí),包括文件的打開(kāi)、讀寫(xiě)、關(guān)閉操作、使用循環(huán)讀寫(xiě)文件及迭代器的知識(shí)。具有很好的參考價(jià)值。下面跟著小編一起來(lái)看下吧2017-03-03
Python數(shù)據(jù)分析的八種處理缺失值方法詳解
缺失值可能是數(shù)據(jù)科學(xué)中最不受歡迎的值,然而,它們總是在身邊。忽略缺失值也是不合理的,因此我們需要找到有效且適當(dāng)?shù)靥幚硭鼈兊姆椒?/div> 2021-11-11最新評(píng)論

