python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression)
更新時間:2020年10月15日 10:42:39 作者:農(nóng)大魯迅
這篇文章主要介紹了python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression),幫助大家更好的進行機器學習,感興趣的朋友可以了解下
本文采用的訓練方法是牛頓法(Newton Method)。
代碼
import numpy as np class LogisticRegression(object): """ Logistic Regression Classifier training by Newton Method """ def __init__(self, error: float = 0.7, max_epoch: int = 100): """ :param error: float, if the distance between new weight and old weight is less than error, the process of traing will break. :param max_epoch: if training epoch >= max_epoch the process of traing will break. """ self.error = error self.max_epoch = max_epoch self.weight = None self.sign = np.vectorize(lambda x: 1 if x >= 0.5 else 0) def p_func(self, X_): """Get P(y=1 | x) :param X_: shape = (n_samples + 1, n_features) :return: shape = (n_samples) """ tmp = np.exp(self.weight @ X_.T) return tmp / (1 + tmp) def diff(self, X_, y, p): """Get derivative :param X_: shape = (n_samples, n_features + 1) :param y: shape = (n_samples) :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1) first derivative """ return -(y - p) @ X_ def hess_mat(self, X_, p): """Get Hessian Matrix :param p: shape = (n_samples) P(y=1 | x) :return: shape = (n_features + 1, n_features + 1) second derivative """ hess = np.zeros((X_.shape[1], X_.shape[1])) for i in range(X_.shape[0]): hess += self.X_XT[i] * p[i] * (1 - p[i]) return hess def newton_method(self, X_, y): """Newton Method to calculate weight :param X_: shape = (n_samples + 1, n_features) :param y: shape = (n_samples) :return: None """ self.weight = np.ones(X_.shape[1]) self.X_XT = [] for i in range(X_.shape[0]): t = X_[i, :].reshape((-1, 1)) self.X_XT.append(t @ t.T) for _ in range(self.max_epoch): p = self.p_func(X_) diff = self.diff(X_, y, p) hess = self.hess_mat(X_, p) new_weight = self.weight - (np.linalg.inv(hess) @ diff.reshape((-1, 1))).flatten() if np.linalg.norm(new_weight - self.weight) <= self.error: break self.weight = new_weight def fit(self, X, y): """ :param X_: shape = (n_samples, n_features) :param y: shape = (n_samples) :return: self """ X_ = np.c_[np.ones(X.shape[0]), X] self.newton_method(X_, y) return self def predict(self, X) -> np.array: """ :param X: shape = (n_samples, n_features] :return: shape = (n_samples] """ X_ = np.c_[np.ones(X.shape[0]), X] return self.sign(self.p_func(X_))
測試代碼
import matplotlib.pyplot as plt import sklearn.datasets def plot_decision_boundary(pred_func, X, y, title=None): """分類器畫圖函數(shù),可畫出樣本點和決策邊界 :param pred_func: predict函數(shù) :param X: 訓練集X :param y: 訓練集Y :return: None """ # Set min and max values and give it some padding x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole gid Z = pred_func(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.scatter(X[:, 0], X[:, 1], s=40, c=y, cmap=plt.cm.Spectral) if title: plt.title(title) plt.show()
效果
更多機器學習代碼,請訪問 https://github.com/WiseDoge/plume
以上就是python 牛頓法實現(xiàn)邏輯回歸(Logistic Regression)的詳細內(nèi)容,更多關于python 邏輯回歸的資料請關注腳本之家其它相關文章!
相關文章
nginx搭建基于python的web環(huán)境的實現(xiàn)步驟
這篇文章主要介紹了nginx搭建基于python的web環(huán)境的實現(xiàn)步驟,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-01-01python3使用logging包,如何把日志寫到系統(tǒng)的rsyslog中
這篇文章主要介紹了python3使用logging包,如何把日志寫到系統(tǒng)的rsyslog中的問題,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教2023-09-09Python?+?Tkinter連接本地MySQL數(shù)據(jù)庫簡單實現(xiàn)注冊登錄
這篇文章主要介紹了Python?+?Tkinter連接本地MySQL數(shù)據(jù)庫簡單實現(xiàn)注冊登錄。下面文章著情介紹,需要的小伙伴可以參考一下2022-01-01PyTorch的Optimizer訓練工具的實現(xiàn)
這篇文章主要介紹了PyTorch的Optimizer訓練工具的實現(xiàn),文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-08-08