欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python獲取android設(shè)備cpu和內(nèi)存占用情況

 更新時間:2020年11月15日 11:38:32   作者:初吻--給了奶嘴  
這篇文章主要介紹了Python獲取android設(shè)備cpu和內(nèi)存占用情況,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧

功能:獲取android設(shè)備中某一個app的cpu和內(nèi)存

環(huán)境:python和adb

使用方法:使用adb連接android設(shè)備,打開將要測試的app,執(zhí)行cpu/內(nèi)存代碼

cpu獲取代碼如下:(輸入?yún)?shù)為腳本執(zhí)行時間)

# coding:utf-8
'''
獲取系統(tǒng)total cpu
'''
import os, csv
import time
import csv
import numpy as np
from matplotlib import pyplot as plt

cpu_list = []
time_list = []
app_list = []
lines = []
package_name = []


# 讀取進(jìn)程名稱(包名)
def get_applist():
  global package_name
  with open('config/director.txt', encoding='utf-8', mode='r') as f:
    lines_all = f.readlines()
    for appname in lines_all:
      package_name1 = appname
      appname_new = appname[0:15]
      package_name.append(package_name1)
      lines.append(appname_new)
    for line in lines:
      app_list.append(line.strip())


# 獲取cpu數(shù)值
def get_cpu():
  global filename
  with open(filename, encoding="utf-8", mode="r") as f:
    lines = f.readlines()
    for appname in app_list:
      for lis in lines:
        # 適配低版本手機(jī)
        if appname in lis and '%' in lis:
          now = time.strftime("%H:%M:%S", time.localtime())
          time_list.append(now)
          cpu_1 = lis.split('%')[0]
          cpu_2 = cpu_1.split(' ')
          # print(cpu_2)
          cpu = cpu_2[len(cpu_2) - 1]
          print(cpu, now)
          cpu_list.append(cpu)
          break
        # 適配高版本手機(jī)
        elif appname in lis:
          now = time.strftime("%H:%M:%S", time.localtime())
          time_list.append(now)
          cpu1 = lis.split(' ')
          # print(cpu1)
          cpu2 = list(set(cpu1))
          cpu2.sort(key=cpu1.index)
          cpu_h = cpu2[len(cpu2) - 4]
          print(cpu_h, now)
          cpu_list.append(cpu_h)
          break
        else:
          pass


# csv頭部
def write_head():
  headers = ['name:']
  headers.append(app_list[0])
  headers.append('init_cpu')
  with open('log_su/cpuinfo.csv', 'w+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    writer.writeheader()


# 將數(shù)值寫入csv,用于繪圖時讀取
def write_report():
  # headers = ['name', 'aaa', 'init_cpu']
  with open('log_su/cpuinfo.csv', 'a+', newline='') as csvfile:
    writer = csv.writer(csvfile)
    for key in cpu_list:
      writer.writerow([' ', ' ', key])


# 繪制折線圖,生成測試報告
def mapping():
  filename = 'log_su/cpuinfo.csv'
  with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)
    highs = []
    for row in reader:
      high = row[2]
      highs.append(high)
    # print(highs)

  wights = time_list
  highs_float = list(map(float, highs))
  # print(f"****{highs}")
  print(f"CPU值:{highs_float}")
  # 輸出平均值
  total = 0
  for value in highs_float:
    total += value
  average = round(total/len(highs_float), 2)
  print(f"CPU平均值:{average}")

  #輸出最低值和最高值
  highs_hl = sorted(highs_float)
  print(f"CPU最低值:{highs_hl[0]}")
  print(f"CPU最高值:{highs_hl[len(highs_hl)-1]}")

  # 根據(jù)數(shù)據(jù)繪制圖形
  plt.figure(figsize=(11, 4), dpi=600)
  # 生成網(wǎng)格
  # plt.grid()
  plt.grid(axis="y")
  # 折線圖
  if package_name[0] == 'com.oneapp.max.security.pro.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="PPP")
  elif package_name[0] == 'com.oneapp.max.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Opt1.6.1")
  elif package_name[0] == 'com.boost.clean.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Fastclear")
  elif package_name[0] == 'com.walk.sports.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Walk")
  elif package_name[0] == 'com.diamond.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Amber")
  elif package_name[0] == 'com.oneapp.max.cleaner.booster.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Space")
  else:
    plt.plot(wights, highs_float, "c-", linewidth=1, label=package_name[0])
  # 坐標(biāo)軸范圍
  # plt.ylim(300, 400)
  # plt.xlim(0, 10)

  plt.xlabel('time(H:Min:S)', fontsize=16)
  plt.ylabel("cpu_realtime(%)", fontsize=16)
  plt.title("cpu real time line chart", fontsize=24)
  plt.legend()

  # 橫坐標(biāo)顯示間隔
  if len(wights) <= 15:
    pass
  else:
    t = int(len(wights) / 15)
    plt.xticks(range(0, len(wights), t))

  # 縱坐標(biāo)顯示間隔
  # plt.yticks(range(100, 300, 10))

  # 旋轉(zhuǎn)日期
  plt.gcf().autofmt_xdate()

  # 展示每個坐標(biāo)
  # for a, b in zip(wights, highs_float):
  #   plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=8)

  # plt.show()

  time_now = time.strftime("%m%d-%H:%M:%S", time.localtime())
  path = "report/" + time_now
  plt.savefig(path)


# 自動識別當(dāng)前需檢測的
def name_app():
  cmd = 'adb shell dumpsys window | grep mCurrentFocus > log_su/name_info.csv'
  os.system(cmd)
  with open('log_su/name_info.csv', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      if 'mCurrentFocus' in line:
        name1 = line.split('/')[0].split(' ')
        name = name1[len(name1) - 1]

  with open('config/director.txt', encoding='utf-8', mode='w') as f_name:
    text = name
    f_name.write(text)
  print(f"將要監(jiān)測的包名為:{text}")

#控制監(jiān)測時間
def time_control():
  global filename
  while True:
    end_time = time.time()
    if (end_time - start_time)/60 >= tol_time:  #分鐘
    # if end_time - start_time >= tol_time: # 秒
      break

    time.sleep(1)
    adb = "adb shell top -n 1 > log_su/adb_info.csv"
    d = os.system(adb)
    filename = "log_su/adb_info.csv"
    get_cpu()


if __name__ == "__main__":
  name_app()
  tol_time = int(input("請輸入腳本執(zhí)行時間(分鐘):"))
  start_time = time.time()
  get_applist()
  write_head()
  time_control()
  write_report()
  mapping()

會在.py文件同級目錄下生成3個文件夾,config、log_su、report,其中運行結(jié)果在report中

結(jié)果以是生成折線圖,看起來直觀,如下:

這里我解釋下,cpu占比是adb獲取的實時占比,但是滿值并不一定是100%,比如這張圖,用的是一個八核的手機(jī),所以CPU滿值是800%

內(nèi)存獲取代碼如下:(輸入?yún)?shù)為腳本執(zhí)行時間)

# coding:utf-8
'''
獲取系統(tǒng)total memory
'''
import os, csv
import time
import csv
import numpy as np
from matplotlib import pyplot as plt

mem_dict = {}
time_list = []
app_list = []
package_name = []
t = 0
def get_applist():
  global package_name
  with open('config/director.txt', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      package_name1 = line
      package_name.append(package_name1)
      app_list.append(line.strip())


def get_mem():
  global filename
  with open(filename, encoding="utf-8", mode="r") as f:
    lines = f.readlines()
    start_flag = False
    for appname in app_list:
      for line in lines:
        if "Total PSS by OOM adjustment" in line:
          break
        if appname in line and 'pid' in line and 'kB' in line:
          mem_v = line.strip().split(':')[0].replace('kB', '').replace(',', '')
          line_name = line.split(':')[1].split('(')[0].strip()
          if line_name in appname:
            mem_v = round(float(mem_v) / 1024, 2)
            mem_dict[appname] = mem_v
            now_v = time.strftime("%H:%M:%S", time.localtime())
            # now_int = int(now_v)
            time_list.append(now_v)
            print(mem_v, now_v)
            break
        elif appname in line and 'pid' in line and 'K' in line:
          mem_v = line.strip().split(':')[0].replace('K', '').replace(',', '')
          line_name = line.split(':')[1].split('(')[0].strip()
          if line_name in appname:
            mem_v = round(float(mem_v) / 1024, 2)
            mem_dict[appname] = mem_v
            now_v = time.strftime("%H:%M:%S", time.localtime())
            # now_int = int(now_v)
            time_list.append(now_v)
            print(mem_v, now_v)
            break

def write_head():
  headers = ['name:']
  headers.append(app_list[0])
  headers.append('init_mem')
  with open('log_su/meminfo.csv', 'w+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    writer.writeheader()

def write_report():
  headers = ['name','aaa', 'init_mem']
  with open('log_su/meminfo.csv', 'a+', newline='') as csvfile:
    writer = csv.DictWriter(csvfile, fieldnames=headers)
    for key in mem_dict:
      writer.writerow({'init_mem': mem_dict[key]})


def mapping():
  filename = 'log_su/meminfo.csv'
  with open(filename) as f:
    reader = csv.reader(f)
    header_row = next(reader)
    highs = []
    for row in reader:
      high = row[2]
      highs.append(high)
    # print(highs)

  wights = time_list
  highs_float = list(map(float, highs))

  print(f"內(nèi)存值:{highs_float}")

  # 輸出平均值
  total = 0
  for value in highs_float:
    total += value
  average = round(total / len(highs_float), 2)
  print(f"內(nèi)存平均值:{average}")

  # 輸出最低值和最高值
  highs_hl = sorted(highs_float)
  print(f"內(nèi)存最低值:{highs_hl[0]}")
  print(f"內(nèi)存最高值:{highs_hl[len(highs_hl) - 1]}")

  # 根據(jù)數(shù)據(jù)繪制圖形

  plt.figure(figsize=(11, 4), dpi=600)

  # 生成網(wǎng)格
  # plt.grid()
  plt.grid(axis="y")

  if package_name[0] == 'com.oneapp.max.security.pro.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="PPP")
  elif package_name[0] == 'com.oneapp.max.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Opt")
  elif package_name[0] == 'com.boost.clean.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="fastclear")
  elif package_name[0] == 'com.walk.sports.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Walk")
  elif package_name[0] == 'com.diamond.coin.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Amber")
  elif package_name[0] == 'com.oneapp.max.cleaner.booster.cn':
    plt.plot(wights, highs_float, "c-", linewidth=1, label="Space")
  else:
    plt.plot(wights, highs_float, "c-", linewidth=1, label=package_name[0])
  # 坐標(biāo)軸范圍
  # plt.ylim(300, 400)
  # plt.xlim(0, 10)

  plt.xlabel('time(H:Min:S)', fontsize=16)
  plt.ylabel("Number (Mb)", fontsize=16)
  plt.title("meminfo", fontsize=24)
  plt.legend()

  # 橫坐標(biāo)顯示間隔
  if len(wights) <= 15:
    pass
  else:
    t = int(len(wights) / 15)
    plt.xticks(range(0, len(wights), t))

  # 坐標(biāo)刻度
  # my_y_ticks = np.arange(300, 400, 10)
  # my_x_ticks = np.arange(1, 10, 1)
  # plt.xticks(my_x_ticks)
  # plt.yticks(my_y_ticks)
  # plt.yticks(range(100, 300, 10))

  #旋轉(zhuǎn)日期
  plt.gcf().autofmt_xdate()

  # 展示每個坐標(biāo)
  # for a, b in zip(wights, highs_float):
  #   plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=8)

  # plt.show()

  time_now = time.strftime("%m%d-%H:%M:%S", time.localtime())
  path = "report/" + time_now
  plt.savefig(path)

def name_app():
  cmd = 'adb shell dumpsys window | grep mCurrentFocus > log_su/name_info.csv'
  os.system(cmd)
  with open('log_su/name_info.csv', encoding='utf-8', mode='r') as f:
    lines = f.readlines()
    for line in lines:
      if 'mCurrentFocus' in line:
        name1 = line.split('/')[0].split(' ')
        name = name1[len(name1) - 1]

  with open('config/director.txt', encoding='utf-8', mode='w') as f_name:
    text = name
    f_name.write(text)
  print(f"將要監(jiān)測的包名為:{text}")

def time_control():
  global filename
  while True:
    end_time = time.time()
    if (end_time - start_time)/60 >= tol_time:  #分鐘
    # if end_time - start_time >= tol_time:  #秒
      break
    # time.sleep(2)
    # filename = str(input("請輸入文件名:"))
    adb = "adb shell dumpsys meminfo > log_su/adb_info.csv"
    d = os.system(adb)
    filename = "log_su/adb_info.csv"
    get_mem()
    write_report()

if __name__ == "__main__":
  name_app()
  tol_time = int(input("請輸入腳本執(zhí)行時間(分鐘):"))
  start_time = time.time()
  get_applist()
  write_head()
  time_control()
  mapping()

會在.py文件同級目錄下生成3個文件夾,config、log_su、report,其中運行結(jié)果在report中

生成的內(nèi)存結(jié)果圖如下:

到此這篇關(guān)于Python獲取android設(shè)備cpu和內(nèi)存占用情況的文章就介紹到這了,更多相關(guān)Python獲取android設(shè)備內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • python數(shù)據(jù)可視化之條形圖畫法

    python數(shù)據(jù)可視化之條形圖畫法

    這篇文章主要為大家詳細(xì)介紹了python數(shù)據(jù)可視化之條形圖畫法,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2022-04-04
  • 如何讓python的運行速度得到提升

    如何讓python的運行速度得到提升

    在本篇文章里小編給大家分享了關(guān)于如何讓python的運行速度得到提升的方法和技巧,需要的朋友們可以學(xué)習(xí)下。
    2020-07-07
  • Pytest接口自動化測試框架搭建模板

    Pytest接口自動化測試框架搭建模板

    這篇文章主要介紹了Pytest接口自動化測試框架搭建模板,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-03-03
  • python用pd.read_csv()方法來讀取csv文件的實現(xiàn)

    python用pd.read_csv()方法來讀取csv文件的實現(xiàn)

    本文主要介紹了python用pd.read_csv()方法來讀取csv文件的實現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2022-06-06
  • python實現(xiàn)dijkstra最短路由算法

    python實現(xiàn)dijkstra最短路由算法

    這篇文章主要為大家詳細(xì)介紹了python實現(xiàn)dijkstra最短路由算法,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-01-01
  • Python求解平方根的方法

    Python求解平方根的方法

    這篇文章主要介紹了Python求解平方根的方法,涉及Python數(shù)學(xué)運算的技巧,具有一定參考借鑒價值,需要的朋友可以參考下
    2015-03-03
  • Python?OpenCV實現(xiàn)3種濾鏡效果實例

    Python?OpenCV實現(xiàn)3種濾鏡效果實例

    opencv是一個很強(qiáng)大的庫,支持多個編程語言,下面這篇文章主要給大家介紹了關(guān)于Python?OpenCV實現(xiàn)3種濾鏡效果的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-04-04
  • Python繪制詞云圖之可視化神器pyecharts的方法

    Python繪制詞云圖之可視化神器pyecharts的方法

    這篇文章主要介紹了Python繪制詞云圖之可視化神器pyecharts,本文通過實例代碼給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下
    2021-02-02
  • Python 讀取有公式cell的結(jié)果內(nèi)容實例方法

    Python 讀取有公式cell的結(jié)果內(nèi)容實例方法

    在本篇文章里小編給大家整理的是關(guān)于Python 如何讀取有公式cell的結(jié)果內(nèi)容,需要的朋友們可以學(xué)習(xí)下。
    2020-02-02
  • windows下python之mysqldb模塊安裝方法

    windows下python之mysqldb模塊安裝方法

    這篇文章主要介紹了windows下python之mysqldb模塊安裝方法,需要的朋友可以參考下
    2017-09-09

最新評論