Python 多進程、多線程效率對比
Python 界有條不成文的準則: 計算密集型任務適合多進程,IO 密集型任務適合多線程。本篇來作個比較。
通常來說多線程相對于多進程有優(yōu)勢,因為創(chuàng)建一個進程開銷比較大,然而因為在 python 中有 GIL 這把大鎖的存在,導致執(zhí)行計算密集型任務時多線程實際只能是單線程。而且由于線程之間切換的開銷導致多線程往往比實際的單線程還要慢,所以在 python 中計算密集型任務通常使用多進程,因為各個進程有各自獨立的 GIL,互不干擾。
而在 IO 密集型任務中,CPU 時常處于等待狀態(tài),操作系統(tǒng)需要頻繁與外界環(huán)境進行交互,如讀寫文件,在網(wǎng)絡(luò)間通信等。在這期間 GIL 會被釋放,因而就可以使用真正的多線程。
以上是理論,下面做一個簡單的模擬測試: 大量計算用 math.sin() + math.cos()
來代替,IO 密集型用 time.sleep()
來模擬。 在 Python 中有多種方式可以實現(xiàn)多進程和多線程,這里一并納入看看是否有效率差異:
- 多進程: joblib.multiprocessing, multiprocessing.Pool, multiprocessing.apply_async, concurrent.futures.ProcessPoolExecutor
- 多線程: joblib.threading, threading.Thread, concurrent.futures.ThreadPoolExecutor
from multiprocessing import Pool from threading import Thread from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor import time, os, math from joblib import Parallel, delayed, parallel_backend def f_IO(a): # IO 密集型 time.sleep(5) def f_compute(a): # 計算密集型 for _ in range(int(1e7)): math.sin(40) + math.cos(40) return def normal(sub_f): for i in range(6): sub_f(i) return def joblib_process(sub_f): with parallel_backend("multiprocessing", n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def joblib_thread(sub_f): with parallel_backend('threading', n_jobs=6): res = Parallel()(delayed(sub_f)(j) for j in range(6)) return def mp(sub_f): with Pool(processes=6) as p: res = p.map(sub_f, list(range(6))) return def asy(sub_f): with Pool(processes=6) as p: result = [] for j in range(6): a = p.apply_async(sub_f, args=(j,)) result.append(a) res = [j.get() for j in result] def thread(sub_f): threads = [] for j in range(6): t = Thread(target=sub_f, args=(j,)) threads.append(t) t.start() for t in threads: t.join() def thread_pool(sub_f): with ThreadPoolExecutor(max_workers=6) as executor: res = [executor.submit(sub_f, j) for j in range(6)] def process_pool(sub_f): with ProcessPoolExecutor(max_workers=6) as executor: res = executor.map(sub_f, list(range(6))) def showtime(f, sub_f, name): start_time = time.time() f(sub_f) print("{} time: {:.4f}s".format(name, time.time() - start_time)) def main(sub_f): showtime(normal, sub_f, "normal") print() print("------ 多進程 ------") showtime(joblib_process, sub_f, "joblib multiprocess") showtime(mp, sub_f, "pool") showtime(asy, sub_f, "async") showtime(process_pool, sub_f, "process_pool") print() print("----- 多線程 -----") showtime(joblib_thread, sub_f, "joblib thread") showtime(thread, sub_f, "thread") showtime(thread_pool, sub_f, "thread_pool") if __name__ == "__main__": print("----- 計算密集型 -----") sub_f = f_compute main(sub_f) print() print("----- IO 密集型 -----") sub_f = f_IO main(sub_f)
結(jié)果:
----- 計算密集型 ----- normal time: 15.1212s ------ 多進程 ------ joblib multiprocess time: 8.2421s pool time: 8.5439s async time: 8.3229s process_pool time: 8.1722s ----- 多線程 ----- joblib thread time: 21.5191s thread time: 21.3865s thread_pool time: 22.5104s ----- IO 密集型 ----- normal time: 30.0305s ------ 多進程 ------ joblib multiprocess time: 5.0345s pool time: 5.0188s async time: 5.0256s process_pool time: 5.0263s ----- 多線程 ----- joblib thread time: 5.0142s thread time: 5.0055s thread_pool time: 5.0064s
上面每一方法都統(tǒng)一創(chuàng)建6個進程/線程,結(jié)果是計算密集型任務中速度:多進程 > 單進程/線程 > 多線程, IO 密集型任務速度: 多線程 > 多進程 > 單進程/線程。
以上就是Python 多進程、多線程效率比較的詳細內(nèi)容,更多關(guān)于Python 多進程、多線程的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
python實現(xiàn)mysql的單引號字符串過濾方法
這篇文章主要介紹了python實現(xiàn)mysql的單引號字符串過濾方法,以一個較為詳細的實例形式分析了Python針對MySQL的操作及字符串過濾的技巧,具有一定參考借鑒價值,需要的朋友可以參考下2015-11-11Python實現(xiàn)求取表格文件某個區(qū)域內(nèi)單元格的最大值
這篇文章主要介紹基于Python語言,基于Excel表格文件內(nèi)某一列的數(shù)據(jù),計算這一列數(shù)據(jù)在每一個指定數(shù)量的行的范圍內(nèi)(例如每一個4行的范圍內(nèi))的區(qū)間最大值的方法,需要的朋友可以參考下2023-08-08