python 用Matplotlib作圖中有多個Y軸
在作圖過程中,需要繪制多個變量,但是每個變量的數(shù)量級不同,在一個坐標軸下作圖導致曲線變化很難觀察,這時就用到多個坐標軸。本文除了涉及多個坐標軸還包括Axisartist相關(guān)作圖指令、做圖中l(wèi)abel為公式的表達方式、matplotlib中常用指令。
一、放一個官方例子先
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.pyplot as plt import numpy as np fig = plt.figure(1) #定義figure,(1)中的1是什么 ax_cof = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定義axes,0 <= l,b,w,h <= 1 #parasite addtional axes, share x ax_temp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_load = ParasiteAxes(ax_cof, sharex=ax_cof) ax_cp = ParasiteAxes(ax_cof, sharex=ax_cof) ax_wear = ParasiteAxes(ax_cof, sharex=ax_cof) #append axes ax_cof.parasites.append(ax_temp) ax_cof.parasites.append(ax_load) ax_cof.parasites.append(ax_cp) ax_cof.parasites.append(ax_wear) #invisible right axis of ax_cof ax_cof.axis['right'].set_visible(False) ax_cof.axis['top'].set_visible(False) ax_temp.axis['right'].set_visible(True) ax_temp.axis['right'].major_ticklabels.set_visible(True) ax_temp.axis['right'].label.set_visible(True) #set label for axis ax_cof.set_ylabel('cof') ax_cof.set_xlabel('Distance (m)') ax_temp.set_ylabel('Temperature') ax_load.set_ylabel('load') ax_cp.set_ylabel('CP') ax_wear.set_ylabel('Wear') load_axisline = ax_load.get_grid_helper().new_fixed_axis cp_axisline = ax_cp.get_grid_helper().new_fixed_axis wear_axisline = ax_wear.get_grid_helper().new_fixed_axis ax_load.axis['right2'] = load_axisline(loc='right', axes=ax_load, offset=(40,0)) ax_cp.axis['right3'] = cp_axisline(loc='right', axes=ax_cp, offset=(80,0)) ax_wear.axis['right4'] = wear_axisline(loc='right', axes=ax_wear, offset=(120,0)) fig.add_axes(ax_cof) ''' #set limit of x, y ax_cof.set_xlim(0,2) ax_cof.set_ylim(0,3) ''' curve_cof, = ax_cof.plot([0, 1, 2], [0, 1, 2], label="CoF", color='black') curve_temp, = ax_temp.plot([0, 1, 2], [0, 3, 2], label="Temp", color='red') curve_load, = ax_load.plot([0, 1, 2], [1, 2, 3], label="Load", color='green') curve_cp, = ax_cp.plot([0, 1, 2], [0, 40, 25], label="CP", color='pink') curve_wear, = ax_wear.plot([0, 1, 2], [25, 18, 9], label="Wear", color='blue') ax_temp.set_ylim(0,4) ax_load.set_ylim(0,4) ax_cp.set_ylim(0,50) ax_wear.set_ylim(0,30) ax_cof.legend() #軸名稱,刻度值的顏色 #ax_cof.axis['left'].label.set_color(ax_cof.get_color()) ax_temp.axis['right'].label.set_color('red') ax_load.axis['right2'].label.set_color('green') ax_cp.axis['right3'].label.set_color('pink') ax_wear.axis['right4'].label.set_color('blue') ax_temp.axis['right'].major_ticks.set_color('red') ax_load.axis['right2'].major_ticks.set_color('green') ax_cp.axis['right3'].major_ticks.set_color('pink') ax_wear.axis['right4'].major_ticks.set_color('blue') ax_temp.axis['right'].major_ticklabels.set_color('red') ax_load.axis['right2'].major_ticklabels.set_color('green') ax_cp.axis['right3'].major_ticklabels.set_color('pink') ax_wear.axis['right4'].major_ticklabels.set_color('blue') ax_temp.axis['right'].line.set_color('red') ax_load.axis['right2'].line.set_color('green') ax_cp.axis['right3'].line.set_color('pink') ax_wear.axis['right4'].line.set_color('blue') plt.show()
該例子的作圖結(jié)果為:
二、實際繪制
在實際使用中希望繪制的多變量數(shù)值如下表所示:
為了實現(xiàn)這個作圖,經(jīng)過反復修改美化,代碼如下:
1.導入包
from mpl_toolkits.axisartist.parasite_axes import HostAxes, ParasiteAxes import matplotlib.pyplot as plt
2.導入數(shù)據(jù)
x = ['ATL','LAX','CLT','LAS','MSP','DTW','PHX','DCA','SLC','ORD','DFW','PHL','PDX','DEN','IAH','BOS','SAN','BWI','MDW','IND'] k_in = [49.160,47.367,26.858,30.315,16.552,28.590,23.905,18.818,28.735,6.721,10.315,26.398,38.575,7.646,11.227,8.864,15.327,19.120,11.521,19.618] k_out = [38.024,19.974,25.011,22.050,30.108,18.327,20.811,28.464,23.72,8.470,4.119,10.000,25.158,7.851,10.450,11.130,15.441,7.519,20.819,32.825] p = [0.0537,0.0301,0.0306,0.0217,0.0229,0.0223,0.0218,0.0179,0.0155,0.0465,0.0419,0.0165,0.0091,0.0357,0.0232,0.0200,0.0129,0.0143,0.0113,0.0064] K = [4.6844,2.0296,1.5858,1.1347,1.0706,1.0442,0.9764,0.8447,0.8141,0.7066,0.6041,0.5990,0.5808,0.5534,0.5023,0.3992,0.3964,0.3799,0.3639,0.3331]
3.作圖并保存,相關(guān)指令后有備注,可以幫助理解
fig = plt.figure(1) #定義figure ax_k = HostAxes(fig, [0, 0, 0.9, 0.9]) #用[left, bottom, weight, height]的方式定義axes,0 <= l,b,w,h <= 1 #parasite addtional axes, share x ax_p = ParasiteAxes(ax_k, sharex=ax_k) ax_K = ParasiteAxes(ax_k, sharex=ax_k) #append axes ax_k.parasites.append(ax_p) ax_k.parasites.append(ax_K) ax_k.set_ylabel('$K_i^{in}\;/\;K_i^{out}$') ax_k.axis['bottom'].major_ticklabels.set_rotation(45) ax_k.set_xlabel('Airport') ax_k.axis['bottom','left'].label.set_fontsize(12) # 設置軸label的大小 ax_k.axis['bottom'].major_ticklabels.set_pad(8) #設置x軸坐標刻度與x軸的距離,坐標軸刻度旋轉(zhuǎn)會使label和坐標軸重合 ax_k.axis['bottom'].label.set_pad(12) #設置x軸坐標刻度與x軸label的距離,label會和坐標軸刻度重合 ax_k.axis[:].major_ticks.set_tick_out(True) #設置坐標軸上刻度突起的短線向外還是向內(nèi) #invisible right axis of ax_k ax_k.axis['right'].set_visible(False) ax_k.axis['top'].set_visible(True) ax_p.axis['right'].set_visible(True) ax_p.axis['right'].major_ticklabels.set_visible(True) ax_p.axis['right'].label.set_visible(True) ax_p.axis['right'].major_ticks.set_tick_out(True) ax_p.set_ylabel('${p_i}$') ax_p.axis['right'].label.set_fontsize(13) ax_K.set_ylabel('${K_i}$') K_axisline = ax_K.get_grid_helper().new_fixed_axis ax_K.axis['right2'] = K_axisline(loc='right', axes=ax_K, offset=(60,0)) ax_K.axis['right2'].major_ticks.set_tick_out(True) ax_K.axis['right2'].label.set_fontsize(13) fig.add_axes(ax_k) curve_k1, = ax_k.plot(list(range(20)), k_in, marker ='v',markersize=8,label="$K_i^{in}$",alpha = 0.7) curve_k2, = ax_k.plot(list(range(20)), k_out, marker ='^',markersize=8, label="$K_i^{out}$",alpha = 0.7) curve_p, = ax_p.plot(list(range(20)), p, marker ='P',markersize=8,label="${p_i}$",alpha = 0.7) curve_K, = ax_K.plot(list(range(20)), K, marker ='o',markersize=8, label="${K_i}$",alpha = 0.7,linewidth=3) plt.xticks(list(range(20)), x) # ax_k.set_xticks(list(range(20))) # ax_k.set_xticklabels(x) ax_k.axis['bottom'].major_ticklabels.set_rotation(45) # ax_k.set_rotation(90) # plt.xticks(list(range(20)), x, rotation = 'vertical') ax_p.set_ylim(0,0.06) ax_K.set_ylim(0,5) ax_k.legend(labelspacing = 0.4, fontsize = 10) #軸名稱,刻度值的顏色 ax_p.axis['right'].label.set_color(curve_p.get_color()) # 坐標軸label的顏色 ax_K.axis['right2'].label.set_color(curve_K.get_color()) ax_p.axis['right'].major_ticks.set_color(curve_p.get_color()) # 坐標軸刻度小突起的顏色 ax_K.axis['right2'].major_ticks.set_color(curve_K.get_color()) ax_p.axis['right'].major_ticklabels.set_color(curve_p.get_color()) # 坐標軸刻度值的顏色 ax_K.axis['right2'].major_ticklabels.set_color(curve_K.get_color()) ax_p.axis['right'].line.set_color(curve_p.get_color()) # 坐標軸線的顏色 ax_K.axis['right2'].line.set_color(curve_K.get_color()) plt.savefig('10.key metrics mapping.pdf', bbox_inches='tight', dpi=800) plt.show()
4.繪制結(jié)果
PS
該作圖是在Axisartist的基礎(chǔ)上完成的,一些平時常用的繪制指令在此處是無用的。經(jīng)過查找相關(guān)資料,https://www.osgeo.cn/matplotlib/tutorials/toolkits/axisartist.html 該網(wǎng)站可以提供一些用法的幫助。
以上就是python 用Matplotlib作圖中有多個Y軸的詳細內(nèi)容,更多關(guān)于python Matplotlib作圖的資料請關(guān)注腳本之家其它相關(guān)文章!
- 利用Python matplotlib繪制風能玫瑰圖
- python之 matplotlib和pandas繪圖教程
- python matplotlib工具欄源碼探析二之添加、刪除內(nèi)置工具項的案例
- python matplotlib工具欄源碼探析三之添加、刪除自定義工具項的案例詳解
- python學習之使用Matplotlib畫實時的動態(tài)折線圖的示例代碼
- 用pip給python安裝matplotlib庫的詳細教程
- python 利用matplotlib在3D空間中繪制平面的案例
- python 利用matplotlib在3D空間繪制二次拋物面的案例
- python可視化分析的實現(xiàn)(matplotlib、seaborn、ggplot2)
- python Matplotlib基礎(chǔ)--如何添加文本和標注
- 如何利用Python matplotlib繪制雷達圖
- python 如何在 Matplotlib 中繪制垂直線
相關(guān)文章
Python2.7+pytesser實現(xiàn)簡單驗證碼的識別方法
這篇文章主要介紹了Python2.7+pytesser實現(xiàn)簡單驗證碼的識別方法,簡單分析了pytesser的安裝及Python2.7環(huán)境下實現(xiàn)驗證碼識別的相關(guān)操作技巧,需要的朋友可以參考下2017-12-12pandas數(shù)據(jù)分列實現(xiàn)分割符號&固定寬度
數(shù)據(jù)分列在數(shù)據(jù)處理中很常見,數(shù)據(jù)分列一般指的都是字符串分割,本文主要介紹了pandas數(shù)據(jù)分列實現(xiàn)分割符號&固定寬度,具有一定的參考價值,感興趣的可以了解一下2024-04-04TensorFlow tf.nn.softmax_cross_entropy_with_logits的用法
這篇文章主要介紹了TensorFlow tf.nn.softmax_cross_entropy_with_logits的用法,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2020-04-04如何解決jupyter notebook無法導入自己安裝的包
這篇文章主要介紹了如何解決jupyter notebook無法導入自己安裝的包問題,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-07-07