Prometheus開發(fā)中間件Exporter過程詳解
Prometheus 為開發(fā)這提供了客戶端工具,用于為自己的中間件開發(fā)Exporter,對接Prometheus 。
目前支持的客戶端
以go為例開發(fā)自己的Exporter
依賴包的引入
工程結構
[root@node1 data]# tree exporter/
exporter/
├── collector
│ └── node.go
├── go.mod
└── main.go
引入依賴包
require ( github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd // indirect github.com/modern-go/reflect2 v1.0.1 // indirect github.com/prometheus/client_golang v1.1.0 //借助gopsutil 采集主機指標 github.com/shirou/gopsutil v0.0.0-20190731134726-d80c43f9c984 )
main.go
package main import ( "cloud.io/exporter/collector" "fmt" "github.com/prometheus/client_golang/prometheus" "github.com/prometheus/client_golang/prometheus/promhttp" "net/http" ) func init() { //注冊自身采集器 prometheus.MustRegister(collector.NewNodeCollector()) } func main() { http.Handle("/metrics", promhttp.Handler()) if err := http.ListenAndServe(":8080", nil); err != nil { fmt.Printf("Error occur when start server %v", err) } }
為了能看清結果我將默認采集器注釋,位置registry.go
func init() { //MustRegister(NewProcessCollector(ProcessCollectorOpts{})) //MustRegister(NewGoCollector()) }
/collector/node.go
代碼中涵蓋了Counter、Gauge、Histogram、Summary四種情況,一起混合使用的情況,具體的說明見一下代碼中。
package collector import ( "github.com/prometheus/client_golang/prometheus" "github.com/shirou/gopsutil/host" "github.com/shirou/gopsutil/mem" "runtime" "sync" ) var reqCount int32 var hostname string type NodeCollector struct { requestDesc *prometheus.Desc //Counter nodeMetrics nodeStatsMetrics //混合方式 goroutinesDesc *prometheus.Desc //Gauge threadsDesc *prometheus.Desc //Gauge summaryDesc *prometheus.Desc //summary histogramDesc *prometheus.Desc //histogram mutex sync.Mutex } //混合方式數(shù)據(jù)結構 type nodeStatsMetrics []struct { desc *prometheus.Desc eval func(*mem.VirtualMemoryStat) float64 valType prometheus.ValueType } //初始化采集器 func NewNodeCollector() prometheus.Collector { host,_:= host.Info() hostname = host.Hostname return &NodeCollector{ requestDesc: prometheus.NewDesc( "total_request_count", "請求數(shù)", []string{"DYNAMIC_HOST_NAME"}, //動態(tài)標簽名稱 prometheus.Labels{"STATIC_LABEL1":"靜態(tài)值可以放在這里","HOST_NAME":hostname}), nodeMetrics: nodeStatsMetrics{ { desc: prometheus.NewDesc( "total_mem", "內存總量", nil, nil), valType: prometheus.GaugeValue, eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Total) / 1e9 }, }, { desc: prometheus.NewDesc( "free_mem", "內存空閑", nil, nil), valType: prometheus.GaugeValue, eval: func(ms *mem.VirtualMemoryStat) float64 { return float64(ms.Free) / 1e9 }, }, }, goroutinesDesc:prometheus.NewDesc( "goroutines_num", "協(xié)程數(shù).", nil, nil), threadsDesc: prometheus.NewDesc( "threads_num", "線程數(shù)", nil, nil), summaryDesc: prometheus.NewDesc( "summary_http_request_duration_seconds", "summary類型", []string{"code", "method"}, prometheus.Labels{"owner": "example"}, ), histogramDesc: prometheus.NewDesc( "histogram_http_request_duration_seconds", "histogram類型", []string{"code", "method"}, prometheus.Labels{"owner": "example"}, ), } } // Describe returns all descriptions of the collector. //實現(xiàn)采集器Describe接口 func (n *NodeCollector) Describe(ch chan<- *prometheus.Desc) { ch <- n.requestDesc for _, metric := range n.nodeMetrics { ch <- metric.desc } ch <- n.goroutinesDesc ch <- n.threadsDesc ch <- n.summaryDesc ch <- n.histogramDesc } // Collect returns the current state of all metrics of the collector. //實現(xiàn)采集器Collect接口,真正采集動作 func (n *NodeCollector) Collect(ch chan<- prometheus.Metric) { n.mutex.Lock() ch <- prometheus.MustNewConstMetric(n.requestDesc,prometheus.CounterValue,0,hostname) vm, _ := mem.VirtualMemory() for _, metric := range n.nodeMetrics { ch <- prometheus.MustNewConstMetric(metric.desc, metric.valType, metric.eval(vm)) } ch <- prometheus.MustNewConstMetric(n.goroutinesDesc, prometheus.GaugeValue, float64(runtime.NumGoroutine())) num, _ := runtime.ThreadCreateProfile(nil) ch <- prometheus.MustNewConstMetric(n.threadsDesc, prometheus.GaugeValue, float64(num)) //模擬數(shù)據(jù) ch <- prometheus.MustNewConstSummary( n.summaryDesc, 4711, 403.34, map[float64]float64{0.5: 42.3, 0.9: 323.3}, "200", "get", ) //模擬數(shù)據(jù) ch <- prometheus.MustNewConstHistogram( n.histogramDesc, 4711, 403.34, map[float64]uint64{25: 121, 50: 2403, 100: 3221, 200: 4233}, "200", "get", ) n.mutex.Unlock() }
執(zhí)行的結果http://127.0.0.1:8080/metrics
以上就是本文的全部內容,希望對大家的學習有所幫助,也希望大家多多支持腳本之家。
- 使用Grafana+Prometheus監(jiān)控mysql服務性能
- 利用Prometheus與Grafana對Mysql服務器的性能監(jiān)控詳解
- SpringBoot使用prometheus監(jiān)控的示例代碼
- springboot2.X整合prometheus監(jiān)控的實例講解
- SpringBoot+Prometheus+Grafana實現(xiàn)應用監(jiān)控和報警的詳細步驟
- Prometheus的安裝和配置教程詳解
- Prometheus 入門教程之SpringBoot 實現(xiàn)自定義指標監(jiān)控
- springboot集成普羅米修斯(Prometheus)的方法
- 使用 prometheus python 庫編寫自定義指標的方法(完整代碼)
- 使用prometheus統(tǒng)計MySQL自增主鍵的剩余可用百分比
- 使用Prometheus+Grafana的方法監(jiān)控Springboot應用教程詳解
- Prometheus 監(jiān)控MySQL使用grafana展示
相關文章
Pandas常用的讀取和保存數(shù)據(jù)的函數(shù)使用(csv,mysql,json,excel)
本文主要介紹了Pandas常用的讀取和保存數(shù)據(jù)的函數(shù)使用,主要包括csv,mysql,json,excel這幾種方式,具有一定的參考價值,感興趣的可以了解一下2022-01-01Python中getservbyport和getservbyname函數(shù)的用法大全
在Python的網(wǎng)絡編程中,getservbyport()函數(shù)和getservbyname()函數(shù)是socket模塊中的兩個函數(shù),因此在使用這兩個函數(shù)時,需要導入socket模塊,這篇文章主要介紹了Python中getservbyport和getservbyname函數(shù)的用法,需要的朋友可以參考下2023-01-01python將pandas datarame保存為txt文件的實例
今天小編就為大家分享一篇python將pandas datarame保存為txt文件的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-02-02