python opencv膚色檢測(cè)的實(shí)現(xiàn)示例
1 橢圓膚色檢測(cè)模型
原理:將RGB圖像轉(zhuǎn)換到Y(jié)CRCB空間,膚色像素點(diǎn)會(huì)聚集到一個(gè)橢圓區(qū)域。先定義一個(gè)橢圓模型,然后將每個(gè)RGB像素點(diǎn)轉(zhuǎn)換到Y(jié)CRCB空間比對(duì)是否再橢圓區(qū)域,是的話判斷為皮膚。
YCRCB顏色空間
橢圓模型
代碼
def ellipse_detect(image): """ :param image: 圖片路徑 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256,256), dtype= np.uint8 ) cv2.ellipse(skinCrCbHist ,(113,155),(23,15),43,0, 360, (255,255,255),-1) YCRCB = cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): CR= YCRCB[i,j,1] CB= YCRCB[i,j,2] if skinCrCbHist [CR,CB]>0: skin[i,j]= 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img,img,mask= skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
2 YCrCb顏色空間的Cr分量+Otsu法閾值分割算法
原理
針對(duì)YCRCB中CR分量的處理,將RGB轉(zhuǎn)換為YCRCB,對(duì)CR通道單獨(dú)進(jìn)行otsu處理,otsu方法opencv里用threshold
代碼
def cr_otsu(image): """YCrCb顏色空間的Cr分量+Otsu閾值分割 :param image: 圖片路徑 :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) ycrcb = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(ycrcb) cr1 = cv2.GaussianBlur(cr, (5, 5), 0) _, skin = cv2.threshold(cr1,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU) cv2.namedWindow("image raw", cv2.WINDOW_NORMAL) cv2.imshow("image raw", img) cv2.namedWindow("image CR", cv2.WINDOW_NORMAL) cv2.imshow("image CR", cr1) cv2.namedWindow("Skin Cr+OTSU", cv2.WINDOW_NORMAL) cv2.imshow("Skin Cr+OTSU", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("seperate", cv2.WINDOW_NORMAL) cv2.imshow("seperate", dst) cv2.waitKey()
效果
3 基于YCrCb顏色空間Cr, Cb范圍篩選法
原理
類似于第二種方法,只不過是對(duì)CR和CB兩個(gè)通道綜合考慮
代碼
def crcb_range_sceening(image): """ :param image: 圖片路徑 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) ycrcb=cv2.cvtColor(img,cv2.COLOR_BGR2YCR_CB) (y,cr,cb)= cv2.split(ycrcb) skin = np.zeros(cr.shape,dtype= np.uint8) (x,y)= cr.shape for i in range(0,x): for j in range(0,y): if (cr[i][j]>140)and(cr[i][j])<175 and (cr[i][j]>100) and (cb[i][j])<120: skin[i][j]= 255 else: skin[i][j] = 0 cv2.namedWindow(image,cv2.WINDOW_NORMAL) cv2.imshow(image,img) cv2.namedWindow(image+"skin2 cr+cb",cv2.WINDOW_NORMAL) cv2.imshow(image+"skin2 cr+cb",skin) dst = cv2.bitwise_and(img,img,mask=skin) cv2.namedWindow("cutout",cv2.WINDOW_NORMAL) cv2.imshow("cutout",dst) cv2.waitKey()
效果
4 HSV顏色空間H,S,V范圍篩選法
原理
還是轉(zhuǎn)換空間然后每個(gè)通道設(shè)置一個(gè)閾值綜合考慮,進(jìn)行二值化操作。
代碼
def hsv_detect(image): """ :param image: 圖片路徑 :return: None """ img = cv2.imread(image,cv2.IMREAD_COLOR) hsv=cv2.cvtColor(img,cv2.COLOR_BGR2HSV) (_h,_s,_v)= cv2.split(hsv) skin= np.zeros(_h.shape,dtype=np.uint8) (x,y)= _h.shape for i in range(0,x): for j in range(0,y): if(_h[i][j]>7) and (_h[i][j]<20) and (_s[i][j]>28) and (_s[i][j]<255) and (_v[i][j]>50 ) and (_v[i][j]<255): skin[i][j] = 255 else: skin[i][j] = 0 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) cv2.namedWindow(image + "hsv", cv2.WINDOW_NORMAL) cv2.imshow(image + "hsv", skin) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey()
效果
示例
import cv2 import numpy as np def ellipse_detect(image): """ :param image: img path :return: None """ img = cv2.imread(image, cv2.IMREAD_COLOR) skinCrCbHist = np.zeros((256, 256), dtype=np.uint8) cv2.ellipse(skinCrCbHist, (113, 155), (23, 15), 43, 0, 360, (255, 255, 255), -1) YCRCB = cv2.cvtColor(img, cv2.COLOR_BGR2YCR_CB) (y, cr, cb) = cv2.split(YCRCB) skin = np.zeros(cr.shape, dtype=np.uint8) (x, y) = cr.shape for i in range(0, x): for j in range(0, y): CR = YCRCB[i, j, 1] CB = YCRCB[i, j, 2] if skinCrCbHist[CR, CB] > 0: skin[i, j] = 255 cv2.namedWindow(image, cv2.WINDOW_NORMAL) cv2.imshow(image, img) dst = cv2.bitwise_and(img, img, mask=skin) cv2.namedWindow("cutout", cv2.WINDOW_NORMAL) cv2.imshow("cutout", dst) cv2.waitKey() if __name__ == '__main__': ellipse_detect('./test.png')
到此這篇關(guān)于python opencv膚色檢測(cè)的實(shí)現(xiàn)示例的文章就介紹到這了,更多相關(guān)opencv 膚色檢測(cè)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- 詳解pycharm的python包opencv(cv2)無代碼提示問題的解決
- Python基于opencv的簡單圖像輪廓形狀識(shí)別(全網(wǎng)最簡單最少代碼)
- python用opencv 圖像傅里葉變換
- python基于opencv實(shí)現(xiàn)人臉識(shí)別
- python opencv實(shí)現(xiàn)直線檢測(cè)并測(cè)出傾斜角度(附源碼+注釋)
- Python使用Opencv實(shí)現(xiàn)邊緣檢測(cè)以及輪廓檢測(cè)的實(shí)現(xiàn)
- OpenCV+python實(shí)現(xiàn)膨脹和腐蝕的示例
- OpenCV+Python3.5 簡易手勢(shì)識(shí)別的實(shí)現(xiàn)
- python 使用OpenCV進(jìn)行簡單的人像分割與合成
相關(guān)文章
python求列表對(duì)應(yīng)元素的乘積和的實(shí)現(xiàn)
這篇文章主要介紹了python求列表對(duì)應(yīng)元素的乘積和的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-04-04python如何獲得list或numpy數(shù)組中最大元素對(duì)應(yīng)的索引
這篇文章主要介紹了python如何獲得list或numpy數(shù)組中最大元素對(duì)應(yīng)的索引,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-11-11

python pytorch模型轉(zhuǎn)onnx模型的全過程(多輸入+動(dòng)態(tài)維度)

分享15?個(gè)python中的?Scikit-Learn?技能

解析Anaconda創(chuàng)建python虛擬環(huán)境的問題