matplotlib繪制多子圖共享鼠標(biāo)光標(biāo)的方法示例
matplotlib
官方除了提供了鼠標(biāo)十字光標(biāo)的示例,還提供了同一圖像內(nèi)多子圖共享光標(biāo)的示例,其功能主要由widgets
模塊中的MultiCursor
類提供支持。
MultiCursor
類與Cursor
類參數(shù)類似,差異主要在:
Cursor
類參數(shù)只有一個(gè)ax
,即需要顯示光標(biāo)的子圖;MultiCursor
類參數(shù)為canvas
和axes
,其中axes
為需要共享光標(biāo)的子圖列表。Cursor
類中,光標(biāo)默認(rèn)是十字線;MultiCursor
類中,光標(biāo)默認(rèn)為豎線。
官方示例
import numpy as np import matplotlib.pyplot as plt from matplotlib.widgets import MultiCursor t = np.arange(0.0, 2.0, 0.01) s1 = np.sin(2*np.pi*t) s2 = np.sin(4*np.pi*t) fig, (ax1, ax2) = plt.subplots(2, sharex=True) ax1.plot(t, s1) ax2.plot(t, s2) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1) plt.show()
簡(jiǎn)易修改版
multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1, horizOn=True, vertOn=True)
MultiCursor
類源碼
class MultiCursor(Widget): """ Provide a vertical (default) and/or horizontal line cursor shared between multiple axes. For the cursor to remain responsive you must keep a reference to it. Example usage:: from matplotlib.widgets import MultiCursor import matplotlib.pyplot as plt import numpy as np fig, (ax1, ax2) = plt.subplots(nrows=2, sharex=True) t = np.arange(0.0, 2.0, 0.01) ax1.plot(t, np.sin(2*np.pi*t)) ax2.plot(t, np.sin(4*np.pi*t)) multi = MultiCursor(fig.canvas, (ax1, ax2), color='r', lw=1, horizOn=False, vertOn=True) plt.show() """ def __init__(self, canvas, axes, useblit=True, horizOn=False, vertOn=True, **lineprops): self.canvas = canvas self.axes = axes self.horizOn = horizOn self.vertOn = vertOn xmin, xmax = axes[-1].get_xlim() ymin, ymax = axes[-1].get_ylim() xmid = 0.5 * (xmin + xmax) ymid = 0.5 * (ymin + ymax) self.visible = True self.useblit = useblit and self.canvas.supports_blit self.background = None self.needclear = False if self.useblit: lineprops['animated'] = True if vertOn: self.vlines = [ax.axvline(xmid, visible=False, **lineprops) for ax in axes] else: self.vlines = [] if horizOn: self.hlines = [ax.axhline(ymid, visible=False, **lineprops) for ax in axes] else: self.hlines = [] self.connect() def connect(self): """Connect events.""" self._cidmotion = self.canvas.mpl_connect('motion_notify_event', self.onmove) self._ciddraw = self.canvas.mpl_connect('draw_event', self.clear) def disconnect(self): """Disconnect events.""" self.canvas.mpl_disconnect(self._cidmotion) self.canvas.mpl_disconnect(self._ciddraw) def clear(self, event): """Clear the cursor.""" if self.ignore(event): return if self.useblit: self.background = ( self.canvas.copy_from_bbox(self.canvas.figure.bbox)) for line in self.vlines + self.hlines: line.set_visible(False) def onmove(self, event): if self.ignore(event): return if event.inaxes is None: return if not self.canvas.widgetlock.available(self): return self.needclear = True if not self.visible: return if self.vertOn: for line in self.vlines: line.set_xdata((event.xdata, event.xdata)) line.set_visible(self.visible) if self.horizOn: for line in self.hlines: line.set_ydata((event.ydata, event.ydata)) line.set_visible(self.visible) self._update() def _update(self): if self.useblit: if self.background is not None: self.canvas.restore_region(self.background) if self.vertOn: for ax, line in zip(self.axes, self.vlines): ax.draw_artist(line) if self.horizOn: for ax, line in zip(self.axes, self.hlines): ax.draw_artist(line) self.canvas.blit() else: self.canvas.draw_idle()
到此這篇關(guān)于matplotlib繪制多子圖共享鼠標(biāo)光標(biāo)的方法示例的文章就介紹到這了,更多相關(guān)matplotlib 多子圖鼠標(biāo)光標(biāo)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python圖像處理之簡(jiǎn)單畫板實(shí)現(xiàn)方法示例
這篇文章主要介紹了Python圖像處理之簡(jiǎn)單畫板實(shí)現(xiàn)方法,結(jié)合實(shí)例形式分析了Python基于cv2模塊與numpy模塊的數(shù)值計(jì)算及矩形圖形繪制簡(jiǎn)單操作技巧,需要的朋友可以參考下2018-08-08Python開發(fā)如何在ubuntu 15.10 上配置vim
這篇文章主要介紹了Python開發(fā)如何在ubuntu 15.10 上配置vim 的相關(guān)資料,需要的朋友可以參考下2016-01-01對(duì)Python3 * 和 ** 運(yùn)算符詳解
今天小編就為大家分享一篇對(duì)Python3 * 和 ** 運(yùn)算符詳解,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-02-02Opencv實(shí)現(xiàn)傾斜圖片轉(zhuǎn)正示例
本文主要介紹了Opencv實(shí)現(xiàn)傾斜圖片轉(zhuǎn)正示例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2022-08-08Python Reduce函數(shù)的高級(jí)用法詳解
這篇文章主要介紹了reduce函數(shù)的工作原理和應(yīng)用,同時(shí)提供豐富的示例代碼,方便更好地理解如何使用reduce函數(shù)來(lái)輕松解決復(fù)雜的數(shù)據(jù)聚合問題,需要的可以參考下2023-11-11