詳解Python之Scrapy爬蟲教程NBA球員數(shù)據(jù)存放到Mysql數(shù)據(jù)庫
獲取要爬取的URL
爬蟲前期工作
用Pycharm打開項目開始寫爬蟲文件
字段文件items
# Define here the models for your scraped items # # See documentation in: # https://docs.scrapy.org/en/latest/topics/items.html import scrapy class NbaprojectItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() # pass # 創(chuàng)建字段的固定格式-->scrapy.Field() # 英文名 engName = scrapy.Field() # 中文名 chName = scrapy.Field() # 身高 height = scrapy.Field() # 體重 weight = scrapy.Field() # 國家英文名 contryEn = scrapy.Field() # 國家中文名 contryCh = scrapy.Field() # NBA球齡 experience = scrapy.Field() # 球衣號碼 jerseyNo = scrapy.Field() # 入選年 draftYear = scrapy.Field() # 隊伍英文名 engTeam = scrapy.Field() # 隊伍中文名 chTeam = scrapy.Field() # 位置 position = scrapy.Field() # 東南部 displayConference = scrapy.Field() # 分區(qū) division = scrapy.Field()
爬蟲文件
import scrapy import json from nbaProject.items import NbaprojectItem class NbaspiderSpider(scrapy.Spider): name = 'nbaSpider' allowed_domains = ['nba.com'] # 第一次爬取的網(wǎng)址,可以寫多個網(wǎng)址 # start_urls = ['http://nba.com/'] start_urls = ['https://china.nba.com/static/data/league/playerlist.json'] # 處理網(wǎng)址的response def parse(self, response): # 因為訪問的網(wǎng)站返回的是json格式,首先用第三方包處理json數(shù)據(jù) data = json.loads(response.text)['payload']['players'] # 以下列表用來存放不同的字段 # 英文名 engName = [] # 中文名 chName = [] # 身高 height = [] # 體重 weight = [] # 國家英文名 contryEn = [] # 國家中文名 contryCh = [] # NBA球齡 experience = [] # 球衣號碼 jerseyNo = [] # 入選年 draftYear = [] # 隊伍英文名 engTeam = [] # 隊伍中文名 chTeam = [] # 位置 position = [] # 東南部 displayConference = [] # 分區(qū) division = [] # 計數(shù) count = 1 for i in data: # 英文名 engName.append(str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn'])) # 中文名 chName.append(str(i['playerProfile']['firstName'] + i['playerProfile']['lastName'])) # 國家英文名 contryEn.append(str(i['playerProfile']['countryEn'])) # 國家中文 contryCh.append(str(i['playerProfile']['country'])) # 身高 height.append(str(i['playerProfile']['height'])) # 體重 weight.append(str(i['playerProfile']['weight'])) # NBA球齡 experience.append(str(i['playerProfile']['experience'])) # 球衣號碼 jerseyNo.append(str(i['playerProfile']['jerseyNo'])) # 入選年 draftYear.append(str(i['playerProfile']['draftYear'])) # 隊伍英文名 engTeam.append(str(i['teamProfile']['code'])) # 隊伍中文名 chTeam.append(str(i['teamProfile']['displayAbbr'])) # 位置 position.append(str(i['playerProfile']['position'])) # 東南部 displayConference.append(str(i['teamProfile']['displayConference'])) # 分區(qū) division.append(str(i['teamProfile']['division'])) # 創(chuàng)建item字段對象,用來存儲信息 這里的item就是對應上面導的NbaprojectItem item = NbaprojectItem() item['engName'] = str(i['playerProfile']['firstNameEn'] + i['playerProfile']['lastNameEn']) item['chName'] = str(i['playerProfile']['firstName'] + i['playerProfile']['lastName']) item['contryEn'] = str(i['playerProfile']['countryEn']) item['contryCh'] = str(i['playerProfile']['country']) item['height'] = str(i['playerProfile']['height']) item['weight'] = str(i['playerProfile']['weight']) item['experience'] = str(i['playerProfile']['experience']) item['jerseyNo'] = str(i['playerProfile']['jerseyNo']) item['draftYear'] = str(i['playerProfile']['draftYear']) item['engTeam'] = str(i['teamProfile']['code']) item['chTeam'] = str(i['teamProfile']['displayAbbr']) item['position'] = str(i['playerProfile']['position']) item['displayConference'] = str(i['teamProfile']['displayConference']) item['division'] = str(i['teamProfile']['division']) # 打印爬取信息 print("傳輸了",count,"條字段") count += 1 # 將字段交回給引擎 -> 管道文件 yield item
配置文件->開啟管道文件
# Scrapy settings for nbaProject project # # For simplicity, this file contains only settings considered important or # commonly used. You can find more settings consulting the documentation: # # https://docs.scrapy.org/en/latest/topics/settings.html # https://docs.scrapy.org/en/latest/topics/downloader-middleware.html # https://docs.scrapy.org/en/latest/topics/spider-middleware.html # ----------不做修改部分--------- BOT_NAME = 'nbaProject' SPIDER_MODULES = ['nbaProject.spiders'] NEWSPIDER_MODULE = 'nbaProject.spiders' # ----------不做修改部分--------- # Crawl responsibly by identifying yourself (and your website) on the user-agent #USER_AGENT = 'nbaProject (+http://www.yourdomain.com)' # Obey robots.txt rules # ----------修改部分(可以自行查這是啥東西)--------- # ROBOTSTXT_OBEY = True # ----------修改部分--------- # Configure maximum concurrent requests performed by Scrapy (default: 16) #CONCURRENT_REQUESTS = 32 # Configure a delay for requests for the same website (default: 0) # See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay # See also autothrottle settings and docs #DOWNLOAD_DELAY = 3 # The download delay setting will honor only one of: #CONCURRENT_REQUESTS_PER_DOMAIN = 16 #CONCURRENT_REQUESTS_PER_IP = 16 # Disable cookies (enabled by default) #COOKIES_ENABLED = False # Disable Telnet Console (enabled by default) #TELNETCONSOLE_ENABLED = False # Override the default request headers: #DEFAULT_REQUEST_HEADERS = { # 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', # 'Accept-Language': 'en', #} # Enable or disable spider middlewares # See https://docs.scrapy.org/en/latest/topics/spider-middleware.html #SPIDER_MIDDLEWARES = { # 'nbaProject.middlewares.NbaprojectSpiderMiddleware': 543, #} # Enable or disable downloader middlewares # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html #DOWNLOADER_MIDDLEWARES = { # 'nbaProject.middlewares.NbaprojectDownloaderMiddleware': 543, #} # Enable or disable extensions # See https://docs.scrapy.org/en/latest/topics/extensions.html #EXTENSIONS = { # 'scrapy.extensions.telnet.TelnetConsole': None, #} # Configure item pipelines # See https://docs.scrapy.org/en/latest/topics/item-pipeline.html # 開啟管道文件 # ----------修改部分--------- ITEM_PIPELINES = { 'nbaProject.pipelines.NbaprojectPipeline': 300, } # ----------修改部分--------- # Enable and configure the AutoThrottle extension (disabled by default) # See https://docs.scrapy.org/en/latest/topics/autothrottle.html #AUTOTHROTTLE_ENABLED = True # The initial download delay #AUTOTHROTTLE_START_DELAY = 5 # The maximum download delay to be set in case of high latencies #AUTOTHROTTLE_MAX_DELAY = 60 # The average number of requests Scrapy should be sending in parallel to # each remote server #AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0 # Enable showing throttling stats for every response received: #AUTOTHROTTLE_DEBUG = False # Enable and configure HTTP caching (disabled by default) # See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings #HTTPCACHE_ENABLED = True #HTTPCACHE_EXPIRATION_SECS = 0 #HTTPCACHE_DIR = 'httpcache' #HTTPCACHE_IGNORE_HTTP_CODES = [] #HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'
管道文件 -> 將字段寫進mysql
# Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html # useful for handling different item types with a single interface from itemadapter import ItemAdapter import pymysql class NbaprojectPipeline: # 初始化函數(shù) def __init__(self): # 連接數(shù)據(jù)庫 注意修改數(shù)據(jù)庫信息 self.connect = pymysql.connect(host='域名', user='用戶名', passwd='密碼', db='數(shù)據(jù)庫', port=端口號) # 獲取游標 self.cursor = self.connect.cursor() # 創(chuàng)建一個表用于存放item字段的數(shù)據(jù) createTableSql = """ create table if not exists `nbaPlayer`( playerId INT UNSIGNED AUTO_INCREMENT, engName varchar(80), chName varchar(20), height varchar(20), weight varchar(20), contryEn varchar(50), contryCh varchar(20), experience int, jerseyNo int, draftYear int, engTeam varchar(50), chTeam varchar(50), position varchar(50), displayConference varchar(50), division varchar(50), primary key(playerId) )charset=utf8; """ # 執(zhí)行sql語句 self.cursor.execute(createTableSql) self.connect.commit() print("完成了創(chuàng)建表的工作") #每次yield回來的字段會在這里做處理 def process_item(self, item, spider): # 打印item增加觀賞性 print(item) # sql語句 insert_sql = """ insert into nbaPlayer( playerId, engName, chName,height, weight,contryEn, contryCh,experience, jerseyNo,draftYear ,engTeam,chTeam, position,displayConference, division ) VALUES (null,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s,%s) """ # 執(zhí)行插入數(shù)據(jù)到數(shù)據(jù)庫操作 # 參數(shù)(sql語句,用item字段里的內(nèi)容替換sql語句的占位符) self.cursor.execute(insert_sql, (item['engName'], item['chName'], item['height'], item['weight'] , item['contryEn'], item['contryCh'], item['experience'], item['jerseyNo'], item['draftYear'], item['engTeam'], item['chTeam'], item['position'], item['displayConference'], item['division'])) # 提交,不進行提交無法保存到數(shù)據(jù)庫 self.connect.commit() print("數(shù)據(jù)提交成功!")
啟動爬蟲
屏幕上滾動的數(shù)據(jù)
去數(shù)據(jù)庫查看數(shù)據(jù)
簡簡單單就把球員數(shù)據(jù)爬回來啦~
到此這篇關于詳解Python之Scrapy爬蟲教程NBA球員數(shù)據(jù)存放到Mysql數(shù)據(jù)庫的文章就介紹到這了,更多相關Scrapy爬蟲員數(shù)據(jù)存放到Mysql內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
- Python基于httpx模塊實現(xiàn)發(fā)送請求
- Python爬蟲爬取愛奇藝電影片庫首頁的實例代碼
- Python爬蟲之必備chardet庫
- Python爬蟲進階之Beautiful Soup庫詳解
- Python爬蟲之爬取某文庫文檔數(shù)據(jù)
- Python爬蟲爬取全球疫情數(shù)據(jù)并存儲到mysql數(shù)據(jù)庫的步驟
- 小眾實用的Python 爬蟲庫RoboBrowser
- python爬蟲利器之requests庫的用法(超全面的爬取網(wǎng)頁案例)
- python爬蟲開發(fā)之使用Python爬蟲庫requests多線程抓取貓眼電影TOP100實例
- python爬蟲開發(fā)之使用python爬蟲庫requests,urllib與今日頭條搜索功能爬取搜索內(nèi)容實例
- python爬蟲請求庫httpx和parsel解析庫的使用測評
相關文章
如何使用 Python和 FFmpeg 批量截圖視頻到各自文件夾中
wxPython 提供了一個簡單易用的界面,而 FFmpeg 則負責處理視頻幀的提取,這個工具不僅對視頻編輯工作有幫助,也為批量處理視頻文件提供了極大的便利,這篇文章主要介紹了使用 Python和 FFmpeg 批量截圖視頻到各自文件夾中,需要的朋友可以參考下2024-08-08Python中的pathlib.Path為什么不繼承str詳解
這篇文章主要給大家介紹了關于Python中pathlib.Path為什么不繼承str的相關資料,文中通過示例代碼介紹的非常詳細,對大家學習或者使用Python具有一定的參考學習價值,需要的朋友們下面來一起學習學習吧2019-06-06python如何實現(xiàn)MK突變檢驗方法,代碼復制修改可用
這篇文章主要介紹了python如何實現(xiàn)MK突變檢驗方法,代碼復制修改可用,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2023-05-05Pytorch訓練網(wǎng)絡過程中l(wèi)oss突然變?yōu)?的解決方案
這篇文章主要介紹了Pytorch訓練網(wǎng)絡過程中l(wèi)oss突然變?yōu)?的解決方案,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教2021-05-05