python+opencv實現(xiàn)車道線檢測
python+opencv車道線檢測(簡易實現(xiàn)),供大家參考,具體內(nèi)容如下
技術(shù)棧:python+opencv
實現(xiàn)思路:
1、canny邊緣檢測獲取圖中的邊緣信息;
2、霍夫變換尋找圖中直線;
3、繪制梯形感興趣區(qū)域獲得車前范圍;
4、得到并繪制車道線;
效果展示:

代碼實現(xiàn):
import cv2
import numpy as np
def canny():
gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
#高斯濾波
blur = cv2.GaussianBlur(gray, (5, 5), 0)
#邊緣檢測
canny_img = cv2.Canny(blur, 50, 150)
return canny_img
def region_of_interest(r_image):
h = r_image.shape[0]
w = r_image.shape[1]
# 這個區(qū)域不穩(wěn)定,需要根據(jù)圖片更換
poly = np.array([
[(100, h), (500, h), (290, 180), (250, 180)]
])
mask = np.zeros_like(r_image)
# 繪制掩膜圖像
cv2.fillPoly(mask, poly, 255)
# 獲得ROI區(qū)域
masked_image = cv2.bitwise_and(r_image, mask)
return masked_image
if __name__ == '__main__':
image = cv2.imread('test.jpg')
lane_image = np.copy(image)
canny = canny()
cropped_image = region_of_interest(canny)
cv2.imshow("result", cropped_image)
cv2.waitKey(0)
霍夫變換加線性擬合改良:
效果圖:

代碼實現(xiàn):
主要增加了根據(jù)斜率作線性擬合過濾無用點后連線的操作;
import cv2
import numpy as np
def canny():
gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
canny_img = cv2.Canny(blur, 50, 150)
return canny_img
def region_of_interest(r_image):
h = r_image.shape[0]
w = r_image.shape[1]
poly = np.array([
[(100, h), (500, h), (280, 180), (250, 180)]
])
mask = np.zeros_like(r_image)
cv2.fillPoly(mask, poly, 255)
masked_image = cv2.bitwise_and(r_image, mask)
return masked_image
def get_lines(img_lines):
if img_lines is not None:
for line in lines:
for x1, y1, x2, y2 in line:
# 分左右車道
k = (y2 - y1) / (x2 - x1)
if k < 0:
lefts.append(line)
else:
rights.append(line)
def choose_lines(after_lines, slo_th): # 過濾斜率差別較大的點
slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 獲得斜率數(shù)組
while len(after_lines) > 0:
mean = np.mean(slope) # 計算平均斜率
diff = [abs(s - mean) for s in slope] # 每條線斜率與平均斜率的差距
idx = np.argmax(diff) # 找到最大斜率的索引
if diff[idx] > slo_th: # 大于預(yù)設(shè)的閾值選取
slope.pop(idx)
after_lines.pop(idx)
else:
break
return after_lines
def clac_edgepoints(points, y_min, y_max):
x = [p[0] for p in points]
y = [p[1] for p in points]
k = np.polyfit(y, x, 1) # 曲線擬合的函數(shù),找到xy的擬合關(guān)系斜率
func = np.poly1d(k) # 斜率代入可以得到一個y=kx的函數(shù)
x_min = int(func(y_min)) # y_min = 325其實是近似找了一個
x_max = int(func(y_max))
return [(x_min, y_min), (x_max, y_max)]
if __name__ == '__main__':
image = cv2.imread('F:\\A_javaPro\\test.jpg')
lane_image = np.copy(image)
canny_img = canny()
cropped_image = region_of_interest(canny_img)
lefts = []
rights = []
lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)
get_lines(lines) # 分別得到左右車道線的圖片
good_leftlines = choose_lines(lefts, 0.1) # 處理后的點
good_rightlines = choose_lines(rights, 0.1)
leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]
leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]
rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]
rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]
lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要畫左右車道線的端點
righttop = clac_edgepoints(rightpoints, 180, image.shape[0])
src = np.zeros_like(image)
cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)
cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)
cv2.imshow('line Image', src)
src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)
cv2.imshow('Finally Image', src_2)
cv2.waitKey(0)
待改進:
代碼實用性差,幾乎不能用于實際,但是可以作為初學(xué)者的練手項目;
斑馬線檢測思路:獲取車前感興趣區(qū)域,判斷白色像素點比例即可實現(xiàn);
行人檢測思路:opencv有內(nèi)置行人檢測函數(shù),基于內(nèi)置的訓(xùn)練好的數(shù)據(jù)集;
以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
Python調(diào)用OpenCV實現(xiàn)圖像平滑代碼實例
這篇文章主要介紹了Python調(diào)用OpenCV實現(xiàn)圖像平滑代碼實例,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友可以參考下2020-06-06
python基礎(chǔ)教程之popen函數(shù)操作其它程序的輸入和輸出示例
popen函數(shù)允許一個程序?qū)⒘硪粋€程序作為新進程啟動,并可以傳遞數(shù)據(jù)給它或者通過它接收數(shù)據(jù),下面使用示例學(xué)習(xí)一下他的使用方法2014-02-02
python中的easy_install工具,類似于Php中的pear,或者Ruby中的gem,或者Perl中的cpan,那是相當?shù)乃嵬崃巳绻胧褂?/div> 2013-02-02
libreoffice python 操作word及excel文檔的方法
這篇文章主要介紹了libreoffice python 操作word及excel文檔的方法,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2019-07-07
Python利用lxml庫實現(xiàn)XML高級處理詳解
在Python的世界中,lxml是處理XML和HTML的一款強大且易用的庫,本文主要介紹了如何解析、創(chuàng)建、修改XML文檔,如何使用XPath查詢,以及如何解析大型XML文檔,需要的可以參考下2023-08-08最新評論

