pytorch從csv加載自定義數(shù)據(jù)模板的操作
整理了一套模板,全注釋了,這個難點終于克服了
from PIL import Image
import pandas as pd
import numpy as np
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
import os
#放文件的路徑
dir_path= './97/train/'
csv_path='./97/train.csv'
class Mydataset(Dataset):
#傳遞數(shù)據(jù)路徑,csv路徑 ,數(shù)據(jù)增強方法
def __init__(self, dir_path,csv, transform=None, target_transform=None):
super(Mydataset, self).__init__()
#一個個往列表里面加絕對路徑
self.path = []
#讀取csv
self.data = pd.read_csv(csv)
#對標簽進行硬編碼,例如0 1 2 3 4,把字母變成這個
colorMap = {elem: index + 1 for index, elem in enumerate(set(self.data["label"]))}
self.data['label'] = self.data['label'].map(colorMap)
#創(chuàng)造空的label準備存放標簽
self.num = int(self.data.shape[0]) # 一共多少照片
self.label = np.zeros(self.num, dtype=np.int32)
#迭代得到數(shù)據(jù)路徑和標簽一一對應
for index, row in self.data.iterrows():
self.path.append(os.path.join(dir_path,row['filename']))
self.label[index] = row['label'] # 將數(shù)據(jù)全部讀取出來
#訓練數(shù)據(jù)增強
self.transform = transform
#驗證數(shù)據(jù)增強在這里沒用
self.target_transform = target_transform
#最關鍵的部分,在這里使用前面的方法
def __getitem__(self, index):
img =Image.open(self.path[index]).convert('RGB')
labels = self.label[index]
#在這里做數(shù)據(jù)增強
if self.transform is not None:
img = self.transform(img) # 轉化tensor類型
return img, labels
def __len__(self):
return len(self.data)
#數(shù)據(jù)增強的具體內容
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Resize(150),
transforms.CenterCrop(150),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
)
#加載數(shù)據(jù)
train_data = Mydataset(dir_path=dir_path,csv=csv_path, transform=transform)
trainloader = DataLoader(train_data, batch_size=16, shuffle=True, num_workers=0)
#迭代訓練
for i_batch,batch_data in enumerate(trainloader):
image,label=batch_data
補充:pytorch—定義自己的數(shù)據(jù)集及加載訓練
筆記:pytorch Conv2d 的寬高公式理解,pytorch 使用自己的數(shù)據(jù)集并且加載訓練
一、pypi 鏡像使用幫助
pypi 鏡像每 5 分鐘同步一次。
臨時使用
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package
注意,simple 不能少, 是 https 而不是 http
設為默認
修改 ~/.config/pip/pip.conf (Linux), %APPDATA%\pip\pip.ini (Windows 10) 或 $HOME/Library/Application Support/pip/pip.conf (macOS) (沒有就創(chuàng)建一個), 修改 index-url至tuna,例如
[global] index-url = https://pypi.tuna.tsinghua.edu.cn/simple
pip 和 pip3 并存時,只需修改 ~/.pip/pip.conf。
二、pytorch Conv2d 的寬高公式理解



三、pytorch 使用自己的數(shù)據(jù)集并且加載訓練
import os
import sys
import numpy as np
import cv2
import torch
import torch.nn as nn
import torchvision.transforms as transforms
from torch.utils.data import DataLoader, Dataset
import time
import random
import csv
from PIL import Image
def createImgIndex(dataPath, ratio):
'''
讀取目錄下面的圖片制作包含圖片信息、圖片label的train.txt和val.txt
dataPath: 圖片目錄路徑
ratio: val占比
return:label列表
'''
fileList = os.listdir(dataPath)
random.shuffle(fileList)
classList = [] # label列表
# val 數(shù)據(jù)集制作
with open('data/val_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList)*ratio)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+標準與否
row.append(os.path.join(dataPath, fileList[i])) # 圖片路徑
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
# train 數(shù)據(jù)集制作
with open('data/train_section1015.csv', 'w') as f:
writer = csv.writer(f)
for i in range(int(len(fileList) * ratio)+1, len(fileList)):
row = []
if '.jpg' in fileList[i]:
fileInfo = fileList[i].split('_')
sectionName = fileInfo[0] + '_' + fileInfo[1] # 切面名+標準與否
row.append(os.path.join(dataPath, fileList[i])) # 圖片路徑
if sectionName not in classList:
classList.append(sectionName)
row.append(classList.index(sectionName))
writer.writerow(row)
f.close()
print(classList, len(classList))
return classList
def default_loader(path):
'''定義讀取文件的格式'''
return Image.open(path).resize((128, 128),Image.ANTIALIAS).convert('RGB')
class MyDataset(Dataset):
'''Dataset類是讀入數(shù)據(jù)集數(shù)據(jù)并且對讀入的數(shù)據(jù)進行索引'''
def __init__(self, txt, transform=None, target_transform=None, loader=default_loader):
super(MyDataset, self).__init__() #對繼承自父類的屬性進行初始化
fh = open(txt, 'r') #按照傳入的路徑和txt文本參數(shù),以只讀的方式打開這個文本
reader = csv.reader(fh)
imgs = []
for row in reader:
imgs.append((row[0], int(row[1]))) # (圖片信息,lable)
self.imgs = imgs
self.transform = transform
self.target_transform = target_transform
self.loader = loader
def __getitem__(self, index):
'''用于按照索引讀取每個元素的具體內容'''
# fn是圖片path #fn和label分別獲得imgs[index]也即是剛才每行中row[0]和row[1]的信息
fn, label = self.imgs[index]
img = self.loader(fn)
if self.transform is not None:
img = self.transform(img) #數(shù)據(jù)標簽轉換為Tensor
return img, label
def __len__(self):
'''返回數(shù)據(jù)集的長度'''
return len(self.imgs)
class Model(nn.Module):
def __init__(self, classNum=31):
super(Model, self).__init__()
# torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding)
# torch.nn.MaxPool2d(kernel_size, stride, padding)
# input 維度 [3, 128, 128]
self.cnn = nn.Sequential(
nn.Conv2d(3, 64, 3, 1, 1), # [64, 128, 128]
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [64, 64, 64]
nn.Conv2d(64, 128, 3, 1, 1), # [128, 64, 64]
nn.BatchNorm2d(128),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [128, 32, 32]
nn.Conv2d(128, 256, 3, 1, 1), # [256, 32, 32]
nn.BatchNorm2d(256),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [256, 16, 16]
nn.Conv2d(256, 512, 3, 1, 1), # [512, 16, 16]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 8, 8]
nn.Conv2d(512, 512, 3, 1, 1), # [512, 8, 8]
nn.BatchNorm2d(512),
nn.ReLU(),
nn.MaxPool2d(2, 2, 0), # [512, 4, 4]
)
self.fc = nn.Sequential(
nn.Linear(512 * 4 * 4, 1024),
nn.ReLU(),
nn.Linear(1024, 512),
nn.ReLU(),
nn.Linear(512, classNum)
)
def forward(self, x):
out = self.cnn(x)
out = out.view(out.size()[0], -1)
return self.fc(out)
def train(train_set, train_loader, val_set, val_loader):
model = Model()
loss = nn.CrossEntropyLoss() # 因為是分類任務,所以loss function使用 CrossEntropyLoss
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) # optimizer 使用 Adam
num_epoch = 10
# 開始訓練
for epoch in range(num_epoch):
epoch_start_time = time.time()
train_acc = 0.0
train_loss = 0.0
val_acc = 0.0
val_loss = 0.0
model.train() # train model會開放Dropout和BN
for i, data in enumerate(train_loader):
optimizer.zero_grad() # 用 optimizer 將 model 參數(shù)的 gradient 歸零
train_pred = model(data[0]) # 利用 model 的 forward 函數(shù)返回預測結果
batch_loss = loss(train_pred, data[1]) # 計算 loss
batch_loss.backward() # tensor(item, grad_fn=<NllLossBackward>)
optimizer.step() # 以 optimizer 用 gradient 更新參數(shù)
train_acc += np.sum(np.argmax(train_pred.data.numpy(), axis=1) == data[1].numpy())
train_loss += batch_loss.item()
model.eval()
with torch.no_grad(): # 不跟蹤梯度
for i, data in enumerate(val_loader):
# data = [imgData, labelList]
val_pred = model(data[0])
batch_loss = loss(val_pred, data[1])
val_acc += np.sum(np.argmax(val_pred.data.numpy(), axis=1) == data[1].numpy())
val_loss += batch_loss.item()
# 打印結果
print('[%03d/%03d] %2.2f sec(s) Train Acc: %3.6f Loss: %3.6f | Val Acc: %3.6f loss: %3.6f' % \
(epoch + 1, num_epoch, time.time() - epoch_start_time, \
train_acc / train_set.__len__(), train_loss / train_set.__len__(), val_acc / val_set.__len__(),
val_loss / val_set.__len__()))
if __name__ == '__main__':
dirPath = '/data/Matt/QC_images/test0916' # 圖片文件目錄
createImgIndex(dirPath, 0.2) # 創(chuàng)建train.txt, val.txt
root = os.getcwd() + '/data/'
train_data = MyDataset(txt=root+'train_section1015.csv', transform=transforms.ToTensor())
val_data = MyDataset(txt=root+'val_section1015.csv', transform=transforms.ToTensor())
train_loader = DataLoader(dataset=train_data, batch_size=6, shuffle=True, num_workers = 4)
val_loader = DataLoader(dataset=val_data, batch_size=6, shuffle=False, num_workers = 4)
# 開始訓練模型
train(train_data, train_loader, val_data, val_loader)

以上為個人經驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
相關文章
利用python+ffmpeg合并B站視頻及格式轉換的實例代碼
這篇文章主要介紹了利用python+ffmpeg合并B站視頻及格式轉換的實例代碼,本文通過實例代碼給大家介紹的非常詳細,對大家的學習或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-11-11
Python+Pygame實現(xiàn)之走四棋兒游戲的實現(xiàn)
大家以前應該都聽說過一個游戲:叫做走四棋兒。直接在家里的水泥地上用燒完的炭火灰畫出幾條線,擺上幾顆石頭子即可。當時的火爆程度可謂是達到了一個新的高度。本文將利用Pygame實現(xiàn)這一游戲,需要的可以參考一下2022-07-07
Python小實例混合使用turtle和tkinter讓小海龜互動起來
Tkinter模塊("Tk 接口")是Python的標準Tk GUI工具包的接口.Tk和Tkinter可以在大多數(shù)的Unix平臺下使用,同樣可以應用在Windows和Macintosh系統(tǒng)里.Tk8.0的后續(xù)版本可以實現(xiàn)本地窗口風格,并良好地運行在絕大多數(shù)平臺中2021-10-10
Python基于property實現(xiàn)類的特性操作示例
這篇文章主要介紹了Python基于property實現(xiàn)類的特性,結合實例形式分析了使用property實現(xiàn)類的特性相關操作技巧與注意事項,需要的朋友可以參考下2018-06-06

