Python深度學(xué)習(xí)之使用Pytorch搭建ShuffleNetv2
一、model.py
1.1 Channel Shuffle
def channel_shuffle(x: Tensor, groups: int) -> Tensor: batch_size, num_channels, height, width = x.size() channels_per_group = num_channels // groups # reshape # [batch_size, num_channels, height, width] -> [batch_size, groups, channels_per_group, height, width] x = x.view(batch_size, groups, channels_per_group, height, width) x = torch.transpose(x, 1, 2).contiguous() # flatten x = x.view(batch_size, -1, height, width) return x
1.2 block
class InvertedResidual(nn.Module): def __init__(self, input_c: int, output_c: int, stride: int): super(InvertedResidual, self).__init__() if stride not in [1, 2]: raise ValueError("illegal stride value.") self.stride = stride assert output_c % 2 == 0 branch_features = output_c // 2 # 當(dāng)stride為1時(shí),input_channel應(yīng)該是branch_features的兩倍 # python中 '<<' 是位運(yùn)算,可理解為計(jì)算×2的快速方法 assert (self.stride != 1) or (input_c == branch_features << 1) if self.stride == 2: self.branch1 = nn.Sequential( self.depthwise_conv(input_c, input_c, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(input_c), nn.Conv2d(input_c, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) else: self.branch1 = nn.Sequential() self.branch2 = nn.Sequential( nn.Conv2d(input_c if self.stride > 1 else branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True), self.depthwise_conv(branch_features, branch_features, kernel_s=3, stride=self.stride, padding=1), nn.BatchNorm2d(branch_features), nn.Conv2d(branch_features, branch_features, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(branch_features), nn.ReLU(inplace=True) ) @staticmethod def depthwise_conv(input_c: int, output_c: int, kernel_s: int, stride: int = 1, padding: int = 0, bias: bool = False) -> nn.Conv2d: return nn.Conv2d(in_channels=input_c, out_channels=output_c, kernel_size=kernel_s, stride=stride, padding=padding, bias=bias, groups=input_c) def forward(self, x: Tensor) -> Tensor: if self.stride == 1: x1, x2 = x.chunk(2, dim=1) out = torch.cat((x1, self.branch2(x2)), dim=1) else: out = torch.cat((self.branch1(x), self.branch2(x)), dim=1) out = channel_shuffle(out, 2) return out
1.3 shufflenet v2
class ShuffleNetV2(nn.Module): def __init__(self, stages_repeats: List[int], stages_out_channels: List[int], num_classes: int = 1000, inverted_residual: Callable[..., nn.Module] = InvertedResidual): super(ShuffleNetV2, self).__init__() if len(stages_repeats) != 3: raise ValueError("expected stages_repeats as list of 3 positive ints") if len(stages_out_channels) != 5: raise ValueError("expected stages_out_channels as list of 5 positive ints") self._stage_out_channels = stages_out_channels # input RGB image input_channels = 3 output_channels = self._stage_out_channels[0] self.conv1 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=3, stride=2, padding=1, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) input_channels = output_channels self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) # Static annotations for mypy self.stage2: nn.Sequential self.stage3: nn.Sequential self.stage4: nn.Sequential stage_names = ["stage{}".format(i) for i in [2, 3, 4]] for name, repeats, output_channels in zip(stage_names, stages_repeats, self._stage_out_channels[1:]): seq = [inverted_residual(input_channels, output_channels, 2)] for i in range(repeats - 1): seq.append(inverted_residual(output_channels, output_channels, 1)) setattr(self, name, nn.Sequential(*seq)) input_channels = output_channels output_channels = self._stage_out_channels[-1] self.conv5 = nn.Sequential( nn.Conv2d(input_channels, output_channels, kernel_size=1, stride=1, padding=0, bias=False), nn.BatchNorm2d(output_channels), nn.ReLU(inplace=True) ) self.fc = nn.Linear(output_channels, num_classes) def _forward_impl(self, x: Tensor) -> Tensor: # See note [TorchScript super()] x = self.conv1(x) x = self.maxpool(x) x = self.stage2(x) x = self.stage3(x) x = self.stage4(x) x = self.conv5(x) x = x.mean([2, 3]) # global pool x = self.fc(x) return x def forward(self, x: Tensor) -> Tensor: return self._forward_impl(x)
二、train.py
到此這篇關(guān)于Python深度學(xué)習(xí)之使用Pytorch搭建ShuffleNetv2的文章就介紹到這了,更多相關(guān)Python用Pytorch搭建ShuffleNetv2內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python 使用PyQt5 完成選擇文件或目錄的對(duì)話框方法
今天小編就為大家分享一篇Python 使用PyQt5 完成選擇文件或目錄的對(duì)話框方法。具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2019-06-06jupyter notebook 使用過(guò)程中python莫名崩潰的原因及解決方式
這篇文章主要介紹了jupyter notebook 使用過(guò)程中python莫名崩潰的原因及解決方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2020-04-04Python字典操作詳細(xì)介紹及字典內(nèi)建方法分享
這篇文章主要介紹了Python字典操作詳細(xì)介紹及字典內(nèi)建方法分享,具有一定借鑒價(jià)值,需要的朋友可以參考下2018-01-01Pandas實(shí)現(xiàn)列(column)排序的幾種方法
Pandas是一種高效的數(shù)據(jù)處理庫(kù),在數(shù)據(jù)處理過(guò)程中,咱們經(jīng)常需要將列按照一定的要求進(jìn)行排序,本文就來(lái)介紹一下Pandas實(shí)現(xiàn)列(column)排序的幾種方法,感興趣的可以了解一下2023-11-11Tkinter canvas的畫布參數(shù),刪除組件,添加垂直滾動(dòng)條詳解
這篇文章主要介紹了python tkinter 畫布參數(shù),刪除組件,添加垂直滾動(dòng)條使用實(shí)例,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2021-10-10Python如何從txt文件中提取特定數(shù)據(jù)
這篇文章主要給大家介紹了關(guān)于Python如何從txt文件中提取特定數(shù)據(jù)的相關(guān)資料,有時(shí)我們會(huì)遇到需要按行讀取文本的情況,我們要讀取txt文件獲得數(shù)據(jù),需要的朋友可以參考下2023-08-08Pearson相關(guān)系數(shù)和Spearman相關(guān)系數(shù)的區(qū)別及說(shuō)明
這篇文章主要介紹了Pearson相關(guān)系數(shù)和Spearman相關(guān)系數(shù)的區(qū)別及說(shuō)明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-05-05