教你怎么用python刪除相似度高的圖片
1. 前言
因?yàn)檩斎胧且曨l,切完幀之后都是連續(xù)圖片,所以我的目錄結(jié)構(gòu)如下:
其中frame_output是視頻切幀后的保存路徑,1和2文件夾分別對應(yīng)兩個(gè)是視頻切幀后的圖片。
2. 切幀代碼如下:
#encoding:utf-8 import os import sys import cv2 video_path = '/home/pythonfile/video/' # 絕對路徑,video下有兩段視頻 out_frame_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'frame_output') #frame_output是視頻切幀后的保存路徑 if not os.path.exists(out_frame_path): os.makedirs(out_frame_path) print('out_frame_path', out_frame_path) files = [] list1 = os.listdir(video_path) print('list', list1) for i in range(len(list1)): item = os.path.join(video_path, list1[i]) files.append(item) print('files',files) for k,file in enumerate(files): frame_dir = os.path.join(out_frame_path, '%d'%(k+1)) if not os.path.exists(frame_dir): os.makedirs(frame_dir) cap = cv2.VideoCapture(file) j = 0 print('start prossing NO.%d video' % (k + 1)) while True: ret, frame = cap.read() j += 1 if ret: #每三幀保存一張 if j % 3 == 0: cv2.imwrite(os.path.join(frame_dir, '%d.jpg'%j), frame) else: cap.release() break print('prossed NO.%d video'%(k+1))
3. 刪除相似度高的圖片
# coding: utf-8 import os import cv2 # from skimage.measure import compare_ssim # from skimage.metrics import _structural_similarity from skimage.metrics import structural_similarity as ssim def delete(filename1): os.remove(filename1) def list_all_files(root): files = [] list = os.listdir(root) # os.listdir()方法:返回指定文件夾包含的文件或子文件夾名字的列表。該列表順序以字母排序 for i in range(len(list)): element = os.path.join(root, list[i]) # 需要先使用python路徑拼接os.path.join()函數(shù),將os.listdir()返回的名稱拼接成文件或目錄的絕對路徑再傳入os.path.isdir()和os.path.isfile(). if os.path.isdir(element): # os.path.isdir()用于判斷某一對象(需提供絕對路徑)是否為目錄 # temp_dir = os.path.split(element)[-1] # os.path.split分割文件名與路徑,分割為data_dir和此路徑下的文件名,[-1]表示只取data_dir下的文件名 files.append(list_all_files(element)) elif os.path.isfile(element): files.append(element) # print('2',files) return files def ssim_compare(img_files): count = 0 for currIndex, filename in enumerate(img_files): if not os.path.exists(img_files[currIndex]): print('not exist', img_files[currIndex]) break img = cv2.imread(img_files[currIndex]) img1 = cv2.imread(img_files[currIndex + 1]) #進(jìn)行結(jié)構(gòu)性相似度判斷 # ssim_value = _structural_similarity.structural_similarity(img,img1,multichannel=True) ssim_value = ssim(img,img1,multichannel=True) if ssim_value > 0.9: #基數(shù) count += 1 imgs_n.append(img_files[currIndex + 1]) print('big_ssim:',img_files[currIndex], img_files[currIndex + 1], ssim_value) # 避免數(shù)組越界 if currIndex+1 >= len(img_files)-1: break return count if __name__ == '__main__': path = '/home/dj/pythonfile/frame_output/' img_path = path imgs_n = [] all_files = list_all_files(path) #返回包含完整路徑的所有圖片名的列表 print('1',len(all_files)) for files in all_files: # 根據(jù)文件名排序,x.rfind('/')是從右邊尋找第一個(gè)‘/'出現(xiàn)的位置,也就是最后出現(xiàn)的位置 # 注意sort和sorted的區(qū)別,sort作用于原列表,sorted生成新的列表,且sorted可以作用于所有可迭代對象 files.sort(key = lambda x: int(x[x.rfind('/')+1:-4]))#路徑中包含“/” # print(files) img_files = [] for img in files: if img.endswith('.jpg'): # 將所有圖片名都放入列表中 img_files.append(img) count = ssim_compare(img_files) print(img[:img.rfind('/')],"路徑下刪除的圖片數(shù)量為:",count) for image in imgs_n: delete(image)
4. 導(dǎo)入skimage.measure import compare_ssim出錯(cuò)的解決方法:
將
from skimage.measure import compare_ssim
改為
from skimage.metrics import _structural_similarity
5. structural_similarity.py的源碼
from warnings import warn import numpy as np from scipy.ndimage import uniform_filter, gaussian_filter from ..util.dtype import dtype_range from ..util.arraycrop import crop from .._shared.utils import warn, check_shape_equality __all__ = ['structural_similarity'] def structural_similarity(im1, im2, *, win_size=None, gradient=False, data_range=None, multichannel=False, gaussian_weights=False, full=False, **kwargs): """ Compute the mean structural similarity index between two images. Parameters ---------- im1, im2 : ndarray Images. Any dimensionality with same shape. win_size : int or None, optional The side-length of the sliding window used in comparison. Must be an odd value. If `gaussian_weights` is True, this is ignored and the window size will depend on `sigma`. gradient : bool, optional If True, also return the gradient with respect to im2. data_range : float, optional The data range of the input image (distance between minimum and maximum possible values). By default, this is estimated from the image data-type. multichannel : bool, optional If True, treat the last dimension of the array as channels. Similarity calculations are done independently for each channel then averaged. gaussian_weights : bool, optional If True, each patch has its mean and variance spatially weighted by a normalized Gaussian kernel of width sigma=1.5. full : bool, optional If True, also return the full structural similarity image. Other Parameters ---------------- use_sample_covariance : bool If True, normalize covariances by N-1 rather than, N where N is the number of pixels within the sliding window. K1 : float Algorithm parameter, K1 (small constant, see [1]_). K2 : float Algorithm parameter, K2 (small constant, see [1]_). sigma : float Standard deviation for the Gaussian when `gaussian_weights` is True. Returns ------- mssim : float The mean structural similarity index over the image. grad : ndarray The gradient of the structural similarity between im1 and im2 [2]_. This is only returned if `gradient` is set to True. S : ndarray The full SSIM image. This is only returned if `full` is set to True. Notes ----- To match the implementation of Wang et. al. [1]_, set `gaussian_weights` to True, `sigma` to 1.5, and `use_sample_covariance` to False. .. versionchanged:: 0.16 This function was renamed from ``skimage.measure.compare_ssim`` to ``skimage.metrics.structural_similarity``. References ---------- .. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13, 600-612. https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf, :DOI:`10.1109/TIP.2003.819861` .. [2] Avanaki, A. N. (2009). Exact global histogram specification optimized for structural similarity. Optical Review, 16, 613-621. :arxiv:`0901.0065` :DOI:`10.1007/s10043-009-0119-z` """ check_shape_equality(im1, im2) if multichannel: # loop over channels args = dict(win_size=win_size, gradient=gradient, data_range=data_range, multichannel=False, gaussian_weights=gaussian_weights, full=full) args.update(kwargs) nch = im1.shape[-1] mssim = np.empty(nch) if gradient: G = np.empty(im1.shape) if full: S = np.empty(im1.shape) for ch in range(nch): ch_result = structural_similarity(im1[..., ch], im2[..., ch], **args) if gradient and full: mssim[..., ch], G[..., ch], S[..., ch] = ch_result elif gradient: mssim[..., ch], G[..., ch] = ch_result elif full: mssim[..., ch], S[..., ch] = ch_result else: mssim[..., ch] = ch_result mssim = mssim.mean() if gradient and full: return mssim, G, S elif gradient: return mssim, G elif full: return mssim, S else: return mssim K1 = kwargs.pop('K1', 0.01) K2 = kwargs.pop('K2', 0.03) sigma = kwargs.pop('sigma', 1.5) if K1 < 0: raise ValueError("K1 must be positive") if K2 < 0: raise ValueError("K2 must be positive") if sigma < 0: raise ValueError("sigma must be positive") use_sample_covariance = kwargs.pop('use_sample_covariance', True) if gaussian_weights: # Set to give an 11-tap filter with the default sigma of 1.5 to match # Wang et. al. 2004. truncate = 3.5 if win_size is None: if gaussian_weights: # set win_size used by crop to match the filter size r = int(truncate * sigma + 0.5) # radius as in ndimage win_size = 2 * r + 1 else: win_size = 7 # backwards compatibility if np.any((np.asarray(im1.shape) - win_size) < 0): raise ValueError( "win_size exceeds image extent. If the input is a multichannel " "(color) image, set multichannel=True.") if not (win_size % 2 == 1): raise ValueError('Window size must be odd.') if data_range is None: if im1.dtype != im2.dtype: warn("Inputs have mismatched dtype. Setting data_range based on " "im1.dtype.", stacklevel=2) dmin, dmax = dtype_range[im1.dtype.type] data_range = dmax - dmin ndim = im1.ndim if gaussian_weights: filter_func = gaussian_filter filter_args = {'sigma': sigma, 'truncate': truncate} else: filter_func = uniform_filter filter_args = {'size': win_size} # ndimage filters need floating point data im1 = im1.astype(np.float64) im2 = im2.astype(np.float64) NP = win_size ** ndim # filter has already normalized by NP if use_sample_covariance: cov_norm = NP / (NP - 1) # sample covariance else: cov_norm = 1.0 # population covariance to match Wang et. al. 2004 # compute (weighted) means ux = filter_func(im1, **filter_args) uy = filter_func(im2, **filter_args) # compute (weighted) variances and covariances uxx = filter_func(im1 * im1, **filter_args) uyy = filter_func(im2 * im2, **filter_args) uxy = filter_func(im1 * im2, **filter_args) vx = cov_norm * (uxx - ux * ux) vy = cov_norm * (uyy - uy * uy) vxy = cov_norm * (uxy - ux * uy) R = data_range C1 = (K1 * R) ** 2 C2 = (K2 * R) ** 2 A1, A2, B1, B2 = ((2 * ux * uy + C1, 2 * vxy + C2, ux ** 2 + uy ** 2 + C1, vx + vy + C2)) D = B1 * B2 S = (A1 * A2) / D # to avoid edge effects will ignore filter radius strip around edges pad = (win_size - 1) // 2 # compute (weighted) mean of ssim mssim = crop(S, pad).mean() if gradient: # The following is Eqs. 7-8 of Avanaki 2009. grad = filter_func(A1 / D, **filter_args) * im1 grad += filter_func(-S / B2, **filter_args) * im2 grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D, **filter_args) grad *= (2 / im1.size) if full: return mssim, grad, S else: return mssim, grad else: if full: return mssim, S else: return mssim
到此這篇關(guān)于教你怎么用python刪除相似度高的圖片的文章就介紹到這了,更多相關(guān)python刪除相似度高的圖片內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python and、or以及and-or語法總結(jié)
這篇文章主要介紹了Python and、or以及and-or語法總結(jié),本文分別給出實(shí)例講解它們的使用方法,需要的朋友可以參考下2015-04-04Pygame框架實(shí)現(xiàn)飛機(jī)大戰(zhàn)
這篇文章主要為大家詳細(xì)介紹了Pygame框架實(shí)現(xiàn)飛機(jī)大戰(zhàn),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2020-08-08Anaconda下配置python+opencv+contribx的實(shí)例講解
今天小編就為大家分享一篇Anaconda下配置python+opencv+contribx的實(shí)例講解,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-08-08使用 Python 實(shí)現(xiàn)微信公眾號粉絲遷移流程
近日,因公司業(yè)務(wù)需要,需將原兩個(gè)公眾號合并為一個(gè),即要將其中一個(gè)公眾號(主要是粉絲)遷移到另一個(gè)公眾號。這篇文章主要介紹了使用 Python 實(shí)現(xiàn)微信公眾號粉絲遷移,需要的朋友可以參考下2018-01-01將Python代碼嵌入C++程序進(jìn)行編寫的實(shí)例
這篇文章主要介紹了將Python代碼嵌入C++程序進(jìn)行編寫的實(shí)例,盡管通常還是Python代碼中調(diào)用C++程序的情況較多...需要的朋友可以參考下2015-07-07