欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

教你怎么用python刪除相似度高的圖片

 更新時(shí)間:2021年05月08日 09:54:24   作者:DJames23  
這篇文章主要介紹了教你怎么用python刪除相似度高的圖片,文中有非常詳細(xì)的代碼示例,對正在學(xué)習(xí)python的小伙伴們有很好地幫助,需要的朋友可以參考下

1. 前言

因?yàn)檩斎胧且曨l,切完幀之后都是連續(xù)圖片,所以我的目錄結(jié)構(gòu)如下:

在這里插入圖片描述

其中frame_output是視頻切幀后的保存路徑,1和2文件夾分別對應(yīng)兩個(gè)是視頻切幀后的圖片。

2. 切幀代碼如下:

#encoding:utf-8
import os
import sys
import cv2

video_path = '/home/pythonfile/video/'  # 絕對路徑,video下有兩段視頻
out_frame_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'frame_output')  #frame_output是視頻切幀后的保存路徑
if not os.path.exists(out_frame_path):
    os.makedirs(out_frame_path)
print('out_frame_path', out_frame_path)
files = []
list1 = os.listdir(video_path)
print('list', list1)
for i in range(len(list1)):
    item = os.path.join(video_path, list1[i])
    files.append(item)
print('files',files)
for k,file in enumerate(files):
    frame_dir = os.path.join(out_frame_path, '%d'%(k+1))
    if not os.path.exists(frame_dir):
        os.makedirs(frame_dir)
    cap = cv2.VideoCapture(file)
    j = 0
    print('start prossing NO.%d video' % (k + 1))
    while True:
        ret, frame = cap.read()
        j += 1
        if ret:
        #每三幀保存一張
            if j % 3 == 0:
                cv2.imwrite(os.path.join(frame_dir, '%d.jpg'%j), frame)
        else:
            cap.release()
            break
    print('prossed NO.%d video'%(k+1))

3. 刪除相似度高的圖片

# coding: utf-8
import os
import cv2
# from skimage.measure import compare_ssim
# from skimage.metrics import _structural_similarity
from skimage.metrics import structural_similarity as ssim

def delete(filename1):
    os.remove(filename1)


def list_all_files(root):
    files = []
    list = os.listdir(root)
    # os.listdir()方法:返回指定文件夾包含的文件或子文件夾名字的列表。該列表順序以字母排序
    for i in range(len(list)):
        element = os.path.join(root, list[i])
        # 需要先使用python路徑拼接os.path.join()函數(shù),將os.listdir()返回的名稱拼接成文件或目錄的絕對路徑再傳入os.path.isdir()和os.path.isfile().
        if os.path.isdir(element):  # os.path.isdir()用于判斷某一對象(需提供絕對路徑)是否為目錄
            # temp_dir = os.path.split(element)[-1]
            # os.path.split分割文件名與路徑,分割為data_dir和此路徑下的文件名,[-1]表示只取data_dir下的文件名
            files.append(list_all_files(element))

        elif os.path.isfile(element):
            files.append(element)
    # print('2',files)
    return files


def ssim_compare(img_files):
    count = 0
    for currIndex, filename in enumerate(img_files):
        if not os.path.exists(img_files[currIndex]):
            print('not exist', img_files[currIndex])
            break
        img = cv2.imread(img_files[currIndex])
        img1 = cv2.imread(img_files[currIndex + 1])
        #進(jìn)行結(jié)構(gòu)性相似度判斷
        # ssim_value = _structural_similarity.structural_similarity(img,img1,multichannel=True)
        ssim_value = ssim(img,img1,multichannel=True)
        if ssim_value > 0.9:
            #基數(shù)
            count += 1
            imgs_n.append(img_files[currIndex + 1])
            print('big_ssim:',img_files[currIndex], img_files[currIndex + 1], ssim_value)
        # 避免數(shù)組越界
        if currIndex+1 >= len(img_files)-1:
            break
    return count


if __name__ == '__main__':
    path = '/home/dj/pythonfile/frame_output/'

    img_path = path
    imgs_n = []
   
    all_files = list_all_files(path) #返回包含完整路徑的所有圖片名的列表
    print('1',len(all_files))
   
    for files in all_files:
        # 根據(jù)文件名排序,x.rfind('/')是從右邊尋找第一個(gè)‘/'出現(xiàn)的位置,也就是最后出現(xiàn)的位置
        # 注意sort和sorted的區(qū)別,sort作用于原列表,sorted生成新的列表,且sorted可以作用于所有可迭代對象
        files.sort(key = lambda x: int(x[x.rfind('/')+1:-4]))#路徑中包含“/”
        # print(files)
        img_files = []
        for img in files:
            if img.endswith('.jpg'):
                # 將所有圖片名都放入列表中
                img_files.append(img)
        count = ssim_compare(img_files)
        print(img[:img.rfind('/')],"路徑下刪除的圖片數(shù)量為:",count)
    for image in imgs_n:
        delete(image)

4. 導(dǎo)入skimage.measure import compare_ssim出錯(cuò)的解決方法:

from skimage.measure import compare_ssim

改為

from skimage.metrics import _structural_similarity

5. structural_similarity.py的源碼

from warnings import warn
import numpy as np
from scipy.ndimage import uniform_filter, gaussian_filter

from ..util.dtype import dtype_range
from ..util.arraycrop import crop
from .._shared.utils import warn, check_shape_equality

__all__ = ['structural_similarity']


def structural_similarity(im1, im2,
                          *,
                          win_size=None, gradient=False, data_range=None,
                          multichannel=False, gaussian_weights=False,
                          full=False, **kwargs):
    """
    Compute the mean structural similarity index between two images.

    Parameters
    ----------
    im1, im2 : ndarray
        Images. Any dimensionality with same shape.
    win_size : int or None, optional
        The side-length of the sliding window used in comparison. Must be an
        odd value. If `gaussian_weights` is True, this is ignored and the
        window size will depend on `sigma`.
    gradient : bool, optional
        If True, also return the gradient with respect to im2.
    data_range : float, optional
        The data range of the input image (distance between minimum and
        maximum possible values). By default, this is estimated from the image
        data-type.
    multichannel : bool, optional
        If True, treat the last dimension of the array as channels. Similarity
        calculations are done independently for each channel then averaged.
    gaussian_weights : bool, optional
        If True, each patch has its mean and variance spatially weighted by a
        normalized Gaussian kernel of width sigma=1.5.
    full : bool, optional
        If True, also return the full structural similarity image.

    Other Parameters
    ----------------
    use_sample_covariance : bool
        If True, normalize covariances by N-1 rather than, N where N is the
        number of pixels within the sliding window.
    K1 : float
        Algorithm parameter, K1 (small constant, see [1]_).
    K2 : float
        Algorithm parameter, K2 (small constant, see [1]_).
    sigma : float
        Standard deviation for the Gaussian when `gaussian_weights` is True.

    Returns
    -------
    mssim : float
        The mean structural similarity index over the image.
    grad : ndarray
        The gradient of the structural similarity between im1 and im2 [2]_.
        This is only returned if `gradient` is set to True.
    S : ndarray
        The full SSIM image.  This is only returned if `full` is set to True.

    Notes
    -----
    To match the implementation of Wang et. al. [1]_, set `gaussian_weights`
    to True, `sigma` to 1.5, and `use_sample_covariance` to False.

    .. versionchanged:: 0.16
        This function was renamed from ``skimage.measure.compare_ssim`` to
        ``skimage.metrics.structural_similarity``.

    References
    ----------
    .. [1] Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P.
       (2004). Image quality assessment: From error visibility to
       structural similarity. IEEE Transactions on Image Processing,
       13, 600-612.
       https://ece.uwaterloo.ca/~z70wang/publications/ssim.pdf,
       :DOI:`10.1109/TIP.2003.819861`

    .. [2] Avanaki, A. N. (2009). Exact global histogram specification
       optimized for structural similarity. Optical Review, 16, 613-621.
       :arxiv:`0901.0065`
       :DOI:`10.1007/s10043-009-0119-z`

    """
    check_shape_equality(im1, im2)

    if multichannel:
        # loop over channels
        args = dict(win_size=win_size,
                    gradient=gradient,
                    data_range=data_range,
                    multichannel=False,
                    gaussian_weights=gaussian_weights,
                    full=full)
        args.update(kwargs)
        nch = im1.shape[-1]
        mssim = np.empty(nch)
        if gradient:
            G = np.empty(im1.shape)
        if full:
            S = np.empty(im1.shape)
        for ch in range(nch):
            ch_result = structural_similarity(im1[..., ch],
                                              im2[..., ch], **args)
            if gradient and full:
                mssim[..., ch], G[..., ch], S[..., ch] = ch_result
            elif gradient:
                mssim[..., ch], G[..., ch] = ch_result
            elif full:
                mssim[..., ch], S[..., ch] = ch_result
            else:
                mssim[..., ch] = ch_result
        mssim = mssim.mean()
        if gradient and full:
            return mssim, G, S
        elif gradient:
            return mssim, G
        elif full:
            return mssim, S
        else:
            return mssim

    K1 = kwargs.pop('K1', 0.01)
    K2 = kwargs.pop('K2', 0.03)
    sigma = kwargs.pop('sigma', 1.5)
    if K1 < 0:
        raise ValueError("K1 must be positive")
    if K2 < 0:
        raise ValueError("K2 must be positive")
    if sigma < 0:
        raise ValueError("sigma must be positive")
    use_sample_covariance = kwargs.pop('use_sample_covariance', True)

    if gaussian_weights:
        # Set to give an 11-tap filter with the default sigma of 1.5 to match
        # Wang et. al. 2004.
        truncate = 3.5

    if win_size is None:
        if gaussian_weights:
            # set win_size used by crop to match the filter size
            r = int(truncate * sigma + 0.5)  # radius as in ndimage
            win_size = 2 * r + 1
        else:
            win_size = 7   # backwards compatibility

    if np.any((np.asarray(im1.shape) - win_size) < 0):
        raise ValueError(
            "win_size exceeds image extent.  If the input is a multichannel "
            "(color) image, set multichannel=True.")

    if not (win_size % 2 == 1):
        raise ValueError('Window size must be odd.')

    if data_range is None:
        if im1.dtype != im2.dtype:
            warn("Inputs have mismatched dtype.  Setting data_range based on "
                 "im1.dtype.", stacklevel=2)
        dmin, dmax = dtype_range[im1.dtype.type]
        data_range = dmax - dmin

    ndim = im1.ndim

    if gaussian_weights:
        filter_func = gaussian_filter
        filter_args = {'sigma': sigma, 'truncate': truncate}
    else:
        filter_func = uniform_filter
        filter_args = {'size': win_size}

    # ndimage filters need floating point data
    im1 = im1.astype(np.float64)
    im2 = im2.astype(np.float64)

    NP = win_size ** ndim

    # filter has already normalized by NP
    if use_sample_covariance:
        cov_norm = NP / (NP - 1)  # sample covariance
    else:
        cov_norm = 1.0  # population covariance to match Wang et. al. 2004

    # compute (weighted) means
    ux = filter_func(im1, **filter_args)
    uy = filter_func(im2, **filter_args)

    # compute (weighted) variances and covariances
    uxx = filter_func(im1 * im1, **filter_args)
    uyy = filter_func(im2 * im2, **filter_args)
    uxy = filter_func(im1 * im2, **filter_args)
    vx = cov_norm * (uxx - ux * ux)
    vy = cov_norm * (uyy - uy * uy)
    vxy = cov_norm * (uxy - ux * uy)

    R = data_range
    C1 = (K1 * R) ** 2
    C2 = (K2 * R) ** 2

    A1, A2, B1, B2 = ((2 * ux * uy + C1,
                       2 * vxy + C2,
                       ux ** 2 + uy ** 2 + C1,
                       vx + vy + C2))
    D = B1 * B2
    S = (A1 * A2) / D

    # to avoid edge effects will ignore filter radius strip around edges
    pad = (win_size - 1) // 2

    # compute (weighted) mean of ssim
    mssim = crop(S, pad).mean()

    if gradient:
        # The following is Eqs. 7-8 of Avanaki 2009.
        grad = filter_func(A1 / D, **filter_args) * im1
        grad += filter_func(-S / B2, **filter_args) * im2
        grad += filter_func((ux * (A2 - A1) - uy * (B2 - B1) * S) / D,
                            **filter_args)
        grad *= (2 / im1.size)

        if full:
            return mssim, grad, S
        else:
            return mssim, grad
    else:
        if full:
            return mssim, S
        else:
            return mssim

到此這篇關(guān)于教你怎么用python刪除相似度高的圖片的文章就介紹到這了,更多相關(guān)python刪除相似度高的圖片內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • Python and、or以及and-or語法總結(jié)

    Python and、or以及and-or語法總結(jié)

    這篇文章主要介紹了Python and、or以及and-or語法總結(jié),本文分別給出實(shí)例講解它們的使用方法,需要的朋友可以參考下
    2015-04-04
  • Python圖像處理庫PIL詳細(xì)使用說明

    Python圖像處理庫PIL詳細(xì)使用說明

    Pillow是Python中較為基礎(chǔ)的圖像處理庫,主要用于圖像的基本處理,比如裁剪圖像、調(diào)整圖像大小和圖像顏色處理等,需要的朋友可以參考下
    2022-04-04
  • python如何將兩張圖片生成為全景圖片

    python如何將兩張圖片生成為全景圖片

    這篇文章主要為大家詳細(xì)介紹了python如何將兩張圖片生成為全景圖片,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2020-03-03
  • 簡單介紹使用Python解析并修改XML文檔的方法

    簡單介紹使用Python解析并修改XML文檔的方法

    這篇文章主要介紹了使用Python解析并修改XML文檔的方法,是Python入門學(xué)習(xí)中的基礎(chǔ)知識,需要的朋友可以參考下
    2015-10-10
  • Pygame框架實(shí)現(xiàn)飛機(jī)大戰(zhàn)

    Pygame框架實(shí)現(xiàn)飛機(jī)大戰(zhàn)

    這篇文章主要為大家詳細(xì)介紹了Pygame框架實(shí)現(xiàn)飛機(jī)大戰(zhàn),文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2020-08-08
  • Python獲取接口請求耗時(shí)的方法詳解

    Python獲取接口請求耗時(shí)的方法詳解

    你想知道我們請求一個(gè)url的時(shí)候,握手和請求資源分別占用多長時(shí)間么?今天我們就來使用python寫個(gè)小案例來看看,感興趣的可以跟隨小編一起了解一下
    2023-04-04
  • Anaconda下配置python+opencv+contribx的實(shí)例講解

    Anaconda下配置python+opencv+contribx的實(shí)例講解

    今天小編就為大家分享一篇Anaconda下配置python+opencv+contribx的實(shí)例講解,具有很好的參考價(jià)值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-08-08
  • 使用 Python 實(shí)現(xiàn)微信公眾號粉絲遷移流程

    使用 Python 實(shí)現(xiàn)微信公眾號粉絲遷移流程

    近日,因公司業(yè)務(wù)需要,需將原兩個(gè)公眾號合并為一個(gè),即要將其中一個(gè)公眾號(主要是粉絲)遷移到另一個(gè)公眾號。這篇文章主要介紹了使用 Python 實(shí)現(xiàn)微信公眾號粉絲遷移,需要的朋友可以參考下
    2018-01-01
  • 將Python代碼嵌入C++程序進(jìn)行編寫的實(shí)例

    將Python代碼嵌入C++程序進(jìn)行編寫的實(shí)例

    這篇文章主要介紹了將Python代碼嵌入C++程序進(jìn)行編寫的實(shí)例,盡管通常還是Python代碼中調(diào)用C++程序的情況較多...需要的朋友可以參考下
    2015-07-07
  • TensorFlow低版本代碼自動升級為1.0版本

    TensorFlow低版本代碼自動升級為1.0版本

    這篇文章主要介紹了TensorFlow低版本代碼自動升級為1.0版本,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-02-02

最新評論