欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python爬蟲請求庫httpx和parsel解析庫的使用測評

 更新時間:2021年05月10日 10:59:09   作者:大江狗  
這篇文章主要介紹了python爬蟲請求庫httpx和parsel解析庫的使用測評,幫助大家更好的理解和學(xué)習(xí)使用python,感興趣的朋友可以了解下

Python網(wǎng)絡(luò)爬蟲領(lǐng)域兩個最新的比較火的工具莫過于httpx和parsel了。httpx號稱下一代的新一代的網(wǎng)絡(luò)請求庫,不僅支持requests庫的所有操作,還能發(fā)送異步請求,為編寫異步爬蟲提供了便利。parsel最初集成在著名Python爬蟲框架Scrapy中,后獨立出來成立一個單獨的模塊,支持XPath選擇器, CSS選擇器和正則表達式等多種解析提取方式, 據(jù)說相比于BeautifulSoup,parsel的解析效率更高。

今天我們就以爬取鏈家網(wǎng)上的二手房在售房產(chǎn)信息為例,來測評下httpx和parsel這兩個庫。為了節(jié)約時間,我們以爬取上海市浦東新區(qū)500萬元-800萬元以上的房產(chǎn)為例。

requests + BeautifulSoup組合

首先上場的是Requests + BeautifulSoup組合,這也是大多數(shù)人剛學(xué)習(xí)Python爬蟲時使用的組合。本例中爬蟲的入口url是https://sh.lianjia.com/ershoufang/pudong/a3p5/, 先發(fā)送請求獲取最大頁數(shù),然后循環(huán)發(fā)送請求解析單個頁面提取我們所要的信息(比如小區(qū)名,樓層,朝向,總價,單價等信息),最后導(dǎo)出csv文件。如果你正在閱讀本文,相信你對Python爬蟲已經(jīng)有了一定了解,所以我們不會詳細解釋每一行代碼。

整個項目代碼如下所示:

# homelink_requests.py
# Author: 大江狗
 from fake_useragent import UserAgent
 import requests
 from bs4 import BeautifulSoup
 import csv
 import re
 import time


 class HomeLinkSpider(object):
     def __init__(self):
         self.ua = UserAgent()
         self.headers = {"User-Agent": self.ua.random}
         self.data = list()
         self.path = "浦東_三房_500_800萬.csv"
         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"

     def get_max_page(self):
         response = requests.get(self.url, headers=self.headers)
         if response.status_code == 200:
             soup = BeautifulSoup(response.text, 'html.parser')
             a = soup.select('div[class="page-box house-lst-page-box"]')
             #使用eval是字符串轉(zhuǎn)化為字典格式
             max_page = eval(a[0].attrs["page-data"])["totalPage"] 
             return max_page
         else:
             print("請求失敗 status:{}".format(response.status_code))
             return None

     def parse_page(self):
         max_page = self.get_max_page()
         for i in range(1, max_page + 1):
             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)
             response = requests.get(url, headers=self.headers)
             soup = BeautifulSoup(response.text, 'html.parser')
             ul = soup.find_all("ul", class_="sellListContent")
             li_list = ul[0].select("li")
             for li in li_list:
                 detail = dict()
                 detail['title'] = li.select('div[class="title"]')[0].get_text()

                 #  2室1廳 | 74.14平米 | 南 | 精裝 | 高樓層(共6層) | 1999年建 | 板樓
                 house_info = li.select('div[class="houseInfo"]')[0].get_text()
                 house_info_list = house_info.split(" | ")

                 detail['bedroom'] = house_info_list[0]
                 detail['area'] = house_info_list[1]
                 detail['direction'] = house_info_list[2]

                 floor_pattern = re.compile(r'\d{1,2}')
                 # 從字符串任意位置匹配
                 match1 = re.search(floor_pattern, house_info_list[4])  
                 if match1:
                     detail['floor'] = match1.group()
                 else:
                     detail['floor'] = "未知"

                 # 匹配年份
                 year_pattern = re.compile(r'\d{4}')
                 match2 = re.search(year_pattern, house_info_list[5])
                 if match2:
                     detail['year'] = match2.group()
                 else:
                     detail['year'] = "未知"

                 # 文蘭小區(qū) - 塘橋, 提取小區(qū)名和哈快
                 position_info = li.select('div[class="positionInfo"]')[0].get_text().split(' - ')
                 detail['house'] = position_info[0]
                 detail['location'] = position_info[1]

                 # 650萬,匹配650
                 price_pattern = re.compile(r'\d+')
                 total_price = li.select('div[class="totalPrice"]')[0].get_text()
                 detail['total_price'] = re.search(price_pattern, total_price).group()

                 # 單價64182元/平米, 匹配64182
                 unit_price = li.select('div[class="unitPrice"]')[0].get_text()
                 detail['unit_price'] = re.search(price_pattern, unit_price).group()
                 self.data.append(detail)

     def write_csv_file(self):
         head = ["標題", "小區(qū)", "房廳", "面積", "朝向", "樓層", "年份",
         "位置", "總價(萬)", "單價(元/平方米)"]
         keys = ["title", "house", "bedroom", "area", "direction",
         "floor", "year", "location",
                 "total_price", "unit_price"]

         try:
             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:
                 writer = csv.writer(csv_file, dialect='excel')
                 if head is not None:
                     writer.writerow(head)
                 for item in self.data:
                     row_data = []
                     for k in keys:
                         row_data.append(item[k])
                         # print(row_data)
                     writer.writerow(row_data)
                 print("Write a CSV file to path %s Successful." % self.path)
         except Exception as e:
             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e))

 if __name__ == '__main__':
     start = time.time()
     home_link_spider = HomeLinkSpider()
     home_link_spider.parse_page()
     home_link_spider.write_csv_file()
     end = time.time()
     print("耗時:{}秒".format(end-start))

注意:我們使用了fake_useragent, requests和BeautifulSoup,這些都需要通過pip事先安裝好才能用。

現(xiàn)在我們來看下爬取結(jié)果,耗時約18.5秒,總共爬取580條數(shù)據(jù)。

requests + parsel組合

這次我們同樣采用requests獲取目標網(wǎng)頁內(nèi)容,使用parsel庫(事先需通過pip安裝)來解析。Parsel庫的用法和BeautifulSoup相似,都是先創(chuàng)建實例,然后使用各種選擇器提取DOM元素和數(shù)據(jù),但語法上稍有不同。Beautiful有自己的語法規(guī)則,而Parsel庫支持標準的css選擇器和xpath選擇器, 通過get方法或getall方法獲取文本或?qū)傩灾担褂闷饋砀奖恪?/p>

 # BeautifulSoup的用法
 from bs4 import BeautifulSoup

 soup = BeautifulSoup(response.text, 'html.parser')
 ul = soup.find_all("ul", class_="sellListContent")[0]

 # Parsel的用法, 使用Selector類
 from parsel import Selector
 selector = Selector(response.text)
 ul = selector.css('ul.sellListContent')[0]

 # Parsel獲取文本值或?qū)傩灾蛋咐?
 selector.css('div.title span::text').get()
 selector.css('ul li a::attr(href)').get()
 >>> for li in selector.css('ul > li'):
 ...     print(li.xpath('.//@href').get())

注:老版的parsel庫使用extract()或extract_first()方法獲取文本或?qū)傩灾?,在新版中已被get()和getall()方法替代。

全部代碼如下所示:

 # homelink_parsel.py
 # Author: 大江狗
 from fake_useragent import UserAgent
 import requests
 import csv
 import re
 import time
 from parsel import Selector

 class HomeLinkSpider(object):
     def __init__(self):
         self.ua = UserAgent()
         self.headers = {"User-Agent": self.ua.random}
         self.data = list()
         self.path = "浦東_三房_500_800萬.csv"
         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"

     def get_max_page(self):
         response = requests.get(self.url, headers=self.headers)
         if response.status_code == 200:
             # 創(chuàng)建Selector類實例
             selector = Selector(response.text)
             # 采用css選擇器獲取最大頁碼div Boxl
             a = selector.css('div[class="page-box house-lst-page-box"]')
             # 使用eval將page-data的json字符串轉(zhuǎn)化為字典格式
             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]
             print("最大頁碼數(shù):{}".format(max_page))
             return max_page
         else:
             print("請求失敗 status:{}".format(response.status_code))
             return None

     def parse_page(self):
         max_page = self.get_max_page()
         for i in range(1, max_page + 1):
             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)
             response = requests.get(url, headers=self.headers)
             selector = Selector(response.text)
             ul = selector.css('ul.sellListContent')[0]
             li_list = ul.css('li')
             for li in li_list:
                 detail = dict()
                 detail['title'] = li.css('div.title a::text').get()

                 #  2室1廳 | 74.14平米 | 南 | 精裝 | 高樓層(共6層) | 1999年建 | 板樓
                 house_info = li.css('div.houseInfo::text').get()
                 house_info_list = house_info.split(" | ")

                 detail['bedroom'] = house_info_list[0]
                 detail['area'] = house_info_list[1]
                 detail['direction'] = house_info_list[2]

                 floor_pattern = re.compile(r'\d{1,2}')
                 match1 = re.search(floor_pattern, house_info_list[4])  # 從字符串任意位置匹配
                 if match1:
                     detail['floor'] = match1.group()
                 else:
                     detail['floor'] = "未知"

                 # 匹配年份
                 year_pattern = re.compile(r'\d{4}')
                 match2 = re.search(year_pattern, house_info_list[5])
                 if match2:
                     detail['year'] = match2.group()
                 else:
                     detail['year'] = "未知"

                 # 文蘭小區(qū) - 塘橋    提取小區(qū)名和哈快
                 position_info = li.css('div.positionInfo a::text').getall()
                 detail['house'] = position_info[0]
                 detail['location'] = position_info[1]

                 # 650萬,匹配650
                 price_pattern = re.compile(r'\d+')
                 total_price = li.css('div.totalPrice span::text').get()
                 detail['total_price'] = re.search(price_pattern, total_price).group()

                 # 單價64182元/平米, 匹配64182
                 unit_price = li.css('div.unitPrice span::text').get()
                 detail['unit_price'] = re.search(price_pattern, unit_price).group()
                 self.data.append(detail)

     def write_csv_file(self):

         head = ["標題", "小區(qū)", "房廳", "面積", "朝向", "樓層", 
                 "年份", "位置", "總價(萬)", "單價(元/平方米)"]
         keys = ["title", "house", "bedroom", "area", 
                 "direction", "floor", "year", "location",
                 "total_price", "unit_price"]

         try:
             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:
                 writer = csv.writer(csv_file, dialect='excel')
                 if head is not None:
                     writer.writerow(head)
                 for item in self.data:
                     row_data = []
                     for k in keys:
                         row_data.append(item[k])
                         # print(row_data)
                     writer.writerow(row_data)
                 print("Write a CSV file to path %s Successful." % self.path)
         except Exception as e:
             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e))


 if __name__ == '__main__':
     start = time.time()
     home_link_spider = HomeLinkSpider()
     home_link_spider.parse_page()
     home_link_spider.write_csv_file()
     end = time.time()
     print("耗時:{}秒".format(end-start))

現(xiàn)在我們來看下爬取結(jié)果,爬取580條數(shù)據(jù)耗時約16.5秒,節(jié)省了2秒時間??梢妏arsel比BeautifulSoup解析效率是要高的,爬取任務(wù)少時差別不大,任務(wù)多的話差別可能會大些。

httpx同步 + parsel組合

我們現(xiàn)在來更進一步,使用httpx替代requests庫。httpx發(fā)送同步請求的方式和requests庫基本一樣,所以我們只需要修改上例中兩行代碼,把requests替換成httpx即可, 其余代碼一模一樣。

 from fake_useragent import UserAgent
 import csv
 import re
 import time
 from parsel import Selector
 import httpx


 class HomeLinkSpider(object):
     def __init__(self):
         self.ua = UserAgent()
         self.headers = {"User-Agent": self.ua.random}
         self.data = list()
         self.path = "浦東_三房_500_800萬.csv"
         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"

     def get_max_page(self):

         # 修改這里把requests換成httpx
         response = httpx.get(self.url, headers=self.headers)
         if response.status_code == 200:
             # 創(chuàng)建Selector類實例
             selector = Selector(response.text)
             # 采用css選擇器獲取最大頁碼div Boxl
             a = selector.css('div[class="page-box house-lst-page-box"]')
             # 使用eval將page-data的json字符串轉(zhuǎn)化為字典格式
             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]
             print("最大頁碼數(shù):{}".format(max_page))
             return max_page
         else:
             print("請求失敗 status:{}".format(response.status_code))
             return None

     def parse_page(self):
         max_page = self.get_max_page()
         for i in range(1, max_page + 1):
             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)

              # 修改這里把requests換成httpx
             response = httpx.get(url, headers=self.headers)
             selector = Selector(response.text)
             ul = selector.css('ul.sellListContent')[0]
             li_list = ul.css('li')
             for li in li_list:
                 detail = dict()
                 detail['title'] = li.css('div.title a::text').get()

                 #  2室1廳 | 74.14平米 | 南 | 精裝 | 高樓層(共6層) | 1999年建 | 板樓
                 house_info = li.css('div.houseInfo::text').get()
                 house_info_list = house_info.split(" | ")

                 detail['bedroom'] = house_info_list[0]
                 detail['area'] = house_info_list[1]
                 detail['direction'] = house_info_list[2]


                 floor_pattern = re.compile(r'\d{1,2}')
                 match1 = re.search(floor_pattern, house_info_list[4])  # 從字符串任意位置匹配
                 if match1:
                     detail['floor'] = match1.group()
                 else:
                     detail['floor'] = "未知"

                 # 匹配年份
                 year_pattern = re.compile(r'\d{4}')
                 match2 = re.search(year_pattern, house_info_list[5])
                 if match2:
                     detail['year'] = match2.group()
                 else:
                     detail['year'] = "未知"

                 # 文蘭小區(qū) - 塘橋    提取小區(qū)名和哈快
                 position_info = li.css('div.positionInfo a::text').getall()
                 detail['house'] = position_info[0]
                 detail['location'] = position_info[1]

                 # 650萬,匹配650
                 price_pattern = re.compile(r'\d+')
                 total_price = li.css('div.totalPrice span::text').get()
                 detail['total_price'] = re.search(price_pattern, total_price).group()

                 # 單價64182元/平米, 匹配64182
                 unit_price = li.css('div.unitPrice span::text').get()
                 detail['unit_price'] = re.search(price_pattern, unit_price).group()
                 self.data.append(detail)

     def write_csv_file(self):

         head = ["標題", "小區(qū)", "房廳", "面積", "朝向", "樓層", 
                 "年份", "位置", "總價(萬)", "單價(元/平方米)"]
         keys = ["title", "house", "bedroom", "area", "direction", 
                 "floor", "year", "location",
                 "total_price", "unit_price"]

         try:
             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:
                 writer = csv.writer(csv_file, dialect='excel')
                 if head is not None:
                     writer.writerow(head)
                 for item in self.data:
                     row_data = []
                     for k in keys:
                         row_data.append(item[k])
                         # print(row_data)
                     writer.writerow(row_data)
                 print("Write a CSV file to path %s Successful." % self.path)
         except Exception as e:
             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e))

 if __name__ == '__main__':
     start = time.time()
     home_link_spider = HomeLinkSpider()
     home_link_spider.parse_page()
     home_link_spider.write_csv_file()
     end = time.time()
     print("耗時:{}秒".format(end-start))

整個爬取過程耗時16.1秒,可見使用httpx發(fā)送同步請求時效率和requests基本無差別。

注意:Windows上使用pip安裝httpx可能會出現(xiàn)報錯,要求安裝Visual Studio C++, 這個下載安裝好就沒事了。

接下來,我們就要開始王炸了,使用httpx和asyncio編寫一個異步爬蟲看看從鏈家網(wǎng)上爬取580條數(shù)據(jù)到底需要多長時間。

httpx異步+ parsel組合

Httpx厲害的地方就是能發(fā)送異步請求。整個異步爬蟲實現(xiàn)原理時,先發(fā)送同步請求獲取最大頁碼,把每個單頁的爬取和數(shù)據(jù)解析變?yōu)橐粋€asyncio協(xié)程任務(wù)(使用async定義),最后使用loop執(zhí)行。

大部分代碼與同步爬蟲相同,主要變動地方有兩個:

     # 異步 - 使用協(xié)程函數(shù)解析單頁面,需傳入單頁面url地址
     async def parse_single_page(self, url):

         # 使用httpx發(fā)送異步請求獲取單頁數(shù)據(jù)
         async with httpx.AsyncClient() as client:
             response = await client.get(url, headers=self.headers)
             selector = Selector(response.text)
             # 其余地方一樣

     def parse_page(self):
         max_page = self.get_max_page()
         loop = asyncio.get_event_loop()

         # Python 3.6之前用ayncio.ensure_future或loop.create_task方法創(chuàng)建單個協(xié)程任務(wù)
         # Python 3.7以后可以用戶asyncio.create_task方法創(chuàng)建單個協(xié)程任務(wù)
         tasks = []
         for i in range(1, max_page + 1):
             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)
             tasks.append(self.parse_single_page(url))

         # 還可以使用asyncio.gather(*tasks)命令將多個協(xié)程任務(wù)加入到事件循環(huán)
         loop.run_until_complete(asyncio.wait(tasks))
         loop.close()

整個項目代碼如下所示:

from fake_useragent import UserAgent
 import csv
 import re
 import time
 from parsel import Selector
 import httpx
 import asyncio


 class HomeLinkSpider(object):
     def __init__(self):
         self.ua = UserAgent()
         self.headers = {"User-Agent": self.ua.random}
         self.data = list()
         self.path = "浦東_三房_500_800萬.csv"
         self.url = "https://sh.lianjia.com/ershoufang/pudong/a3p5/"

     def get_max_page(self):
         response = httpx.get(self.url, headers=self.headers)
         if response.status_code == 200:
             # 創(chuàng)建Selector類實例
             selector = Selector(response.text)
             # 采用css選擇器獲取最大頁碼div Boxl
             a = selector.css('div[class="page-box house-lst-page-box"]')
             # 使用eval將page-data的json字符串轉(zhuǎn)化為字典格式
             max_page = eval(a[0].xpath('//@page-data').get())["totalPage"]
             print("最大頁碼數(shù):{}".format(max_page))
             return max_page
         else:
             print("請求失敗 status:{}".format(response.status_code))
             return None

     # 異步 - 使用協(xié)程函數(shù)解析單頁面,需傳入單頁面url地址
     async def parse_single_page(self, url):
         async with httpx.AsyncClient() as client:
             response = await client.get(url, headers=self.headers)
             selector = Selector(response.text)
             ul = selector.css('ul.sellListContent')[0]
             li_list = ul.css('li')
             for li in li_list:
                 detail = dict()
                 detail['title'] = li.css('div.title a::text').get()

                 #  2室1廳 | 74.14平米 | 南 | 精裝 | 高樓層(共6層) | 1999年建 | 板樓
                 house_info = li.css('div.houseInfo::text').get()
                 house_info_list = house_info.split(" | ")

                 detail['bedroom'] = house_info_list[0]
                 detail['area'] = house_info_list[1]
                 detail['direction'] = house_info_list[2]


                 floor_pattern = re.compile(r'\d{1,2}')
                 match1 = re.search(floor_pattern, house_info_list[4])  # 從字符串任意位置匹配
                 if match1:
                     detail['floor'] = match1.group()
                 else:
                     detail['floor'] = "未知"

                 # 匹配年份
                 year_pattern = re.compile(r'\d{4}')
                 match2 = re.search(year_pattern, house_info_list[5])
                 if match2:
                     detail['year'] = match2.group()
                 else:
                     detail['year'] = "未知"

                  # 文蘭小區(qū) - 塘橋    提取小區(qū)名和哈快
                 position_info = li.css('div.positionInfo a::text').getall()
                 detail['house'] = position_info[0]
                 detail['location'] = position_info[1]

                  # 650萬,匹配650
                 price_pattern = re.compile(r'\d+')
                 total_price = li.css('div.totalPrice span::text').get()
                 detail['total_price'] = re.search(price_pattern, total_price).group()

                 # 單價64182元/平米, 匹配64182
                 unit_price = li.css('div.unitPrice span::text').get()
                 detail['unit_price'] = re.search(price_pattern, unit_price).group()

                 self.data.append(detail)

     def parse_page(self):
         max_page = self.get_max_page()
         loop = asyncio.get_event_loop()

         # Python 3.6之前用ayncio.ensure_future或loop.create_task方法創(chuàng)建單個協(xié)程任務(wù)
         # Python 3.7以后可以用戶asyncio.create_task方法創(chuàng)建單個協(xié)程任務(wù)
         tasks = []
         for i in range(1, max_page + 1):
             url = 'https://sh.lianjia.com/ershoufang/pudong/pg{}a3p5/'.format(i)
             tasks.append(self.parse_single_page(url))

         # 還可以使用asyncio.gather(*tasks)命令將多個協(xié)程任務(wù)加入到事件循環(huán)
         loop.run_until_complete(asyncio.wait(tasks))
         loop.close()


     def write_csv_file(self):
         head = ["標題", "小區(qū)", "房廳", "面積", "朝向", "樓層",
                 "年份", "位置", "總價(萬)", "單價(元/平方米)"]
         keys = ["title", "house", "bedroom", "area", "direction",
                 "floor", "year", "location",
                 "total_price", "unit_price"]

         try:
             with open(self.path, 'w', newline='', encoding='utf_8_sig') as csv_file:
                 writer = csv.writer(csv_file, dialect='excel')
                 if head is not None:
                     writer.writerow(head)
                 for item in self.data:
                     row_data = []
                     for k in keys:
                         row_data.append(item[k])
                     writer.writerow(row_data)
                 print("Write a CSV file to path %s Successful." % self.path)
         except Exception as e:
             print("Fail to write CSV to path: %s, Case: %s" % (self.path, e))
 
 if __name__ == '__main__':
     start = time.time()
     home_link_spider = HomeLinkSpider()
     home_link_spider.parse_page()
     home_link_spider.write_csv_file()
     end = time.time()
     print("耗時:{}秒".format(end-start))

現(xiàn)在到了見證奇跡的時刻了。從鏈家網(wǎng)上爬取了580條數(shù)據(jù),使用httpx編寫的異步爬蟲僅僅花了2.5秒!!

對比與總結(jié)

爬取同樣的內(nèi)容,采用不同工具組合耗時是不一樣的。httpx異步+parsel組合毫無疑問是最大的贏家, requests和BeautifulSoup確實可以功成身退啦。

  • requests + BeautifulSoup: 18.5 秒
  • requests + parsel: 16.5秒
  • httpx 同步 + parsel: 16.1秒
  • httpx 異步 + parsel: 2.5秒

對于Python爬蟲,你還有喜歡的庫嗎?

以上就是python爬蟲請求庫httpx和parsel解析庫的使用測評的詳細內(nèi)容,更多關(guān)于python httpx和parsel的資料請關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Python運算符之Inplace運算符的使用教程

    Python運算符之Inplace運算符的使用教程

    Inplace運算符的行為與普通運算符相似,只是在可變目標和不可變目標的情況下它們以不同的方式起作用。本文將通過示例帶大家了解Inplace運算符的使用,需要的可以參考一下
    2022-09-09
  • 社區(qū)版pycharm創(chuàng)建django項目的方法(pycharm的newproject左側(cè)沒有項目選項)

    社區(qū)版pycharm創(chuàng)建django項目的方法(pycharm的newproject左側(cè)沒有項目選項)

    pycharm的newproject左側(cè)沒有出現(xiàn)項目選項的情況下,創(chuàng)建Django項目的解決方法./社區(qū)版pycharm創(chuàng)建django項目的方法,本文給大家介紹的非常詳細,對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友參考下吧
    2020-09-09
  • Python繪制牛奶凍曲線(高木曲線)案例

    Python繪制牛奶凍曲線(高木曲線)案例

    這篇文章主要介紹了Python繪制牛奶凍曲線(高木曲線)案例,文章圍繞主題展開詳細的內(nèi)容介紹,具有一定的參考價值,需要的小伙伴可以參考一下
    2022-08-08
  • python開發(fā)之函數(shù)定義實例分析

    python開發(fā)之函數(shù)定義實例分析

    這篇文章主要介紹了python開發(fā)之函數(shù)定義方法,以實例形式較為詳細的分析了Python中函數(shù)的定義與使用技巧,需要的朋友可以參考下
    2015-11-11
  • 基于python實現(xiàn)垂直爬蟲系統(tǒng)的方法詳解

    基于python實現(xiàn)垂直爬蟲系統(tǒng)的方法詳解

    這篇文章主要為大家詳細介紹了python實現(xiàn)垂直爬蟲系統(tǒng)的方法,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來幫助
    2022-03-03
  • Python利用memory_profiler實現(xiàn)內(nèi)存分析

    Python利用memory_profiler實現(xiàn)內(nèi)存分析

    memory_profiler是第三方模塊,用于監(jiān)視進程的內(nèi)存消耗以及python程序內(nèi)存消耗的逐行分析。本文將利用memory_profiler實現(xiàn)內(nèi)存分析,需要的可以參考一下
    2022-10-10
  • python使用turtle庫繪制時鐘

    python使用turtle庫繪制時鐘

    這篇文章主要為大家詳細介紹了python使用turtle庫繪制時鐘,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2018-06-06
  • python opencv實現(xiàn)證件照換底功能

    python opencv實現(xiàn)證件照換底功能

    這篇文章主要為大家詳細介紹了python opencv實現(xiàn)證件照換底功能,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-08-08
  • 用Python獲取攝像頭并實時控制人臉的實現(xiàn)示例

    用Python獲取攝像頭并實時控制人臉的實現(xiàn)示例

    這篇文章主要介紹了用Python獲取攝像頭并實時控制人臉的實現(xiàn)示例,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2019-07-07
  • python使用pgzero進行游戲開發(fā)

    python使用pgzero進行游戲開發(fā)

    今天要和大家分享的pgzero(pygame zero)是在pygame基礎(chǔ)上做了進一步的封裝,使得設(shè)計一款游戲十分的方便,特別適合少兒編程領(lǐng)域的教學(xué), 與scratch相得益彰。
    2021-06-06

最新評論