淺談dataframe兩列相乘構(gòu)造新特征
假如我們要構(gòu)建新特征b
目的是從a中篩選出數(shù)值在4~6之間的數(shù)據(jù),如果符合就是True,否則就是False。
那么代碼如下
import pandas as pd lists=pd.DataFrame({'a':[1,2,3,4,5,6,7,8,9]}) lists['b']=(lists['a']<6).mul(lists['a']>4)
補(bǔ)充:dataframe求兩列的相乘,再將輸出為新的一列
看代碼吧~
df["new"]=df3["rate"]*df3["duration"]
new為新的一列的列名
rate和duration為需要相乘的列
加,減,乘,除都適用!
補(bǔ)充:DataFrame衍生新特征操作
1.DataFrame中某一列的值衍生為新的特征
#將LBL1特征的值衍生為one-hot形式的新特征 piao=df_train_log.LBL1.value_counts().index #先構(gòu)造一個(gè)臨時(shí)的df df_tmp=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values}) #將所有的新特征列都置為0 for i in piao: df_tmp['PIAO_'+i]=0 #進(jìn)行分組便利,有這個(gè)特征就置為1,原數(shù)據(jù)每個(gè)USRID有多條記錄,所以分組統(tǒng)計(jì) group=df_train_log.groupby(['USRID']) for k in group.groups.keys(): t = group.get_group(k) id=t.USRID.value_counts().index[0] tmp_list=t.LBL1.value_counts().index for j in tmp_list: df_tmp['PIAO_'+j].loc[df_tmp.USRID==id]=1
2.分組統(tǒng)計(jì),選出同一USRID下該變量中出現(xiàn)次數(shù)最多的值項(xiàng)
group=df_train_log.groupby(['USRID']) lt=[] list_max_lbl1=[] list_max_lbl2=[] list_max_lbl3=[] for k in group.groups.keys(): t = group.get_group(k) #通過value_counts找出出現(xiàn)次數(shù)最多的項(xiàng) argmx = np.argmax(t['EVT_LBL'].value_counts()) lbl1_max=np.argmax(t['LBL1'].value_counts()) lbl2_max=np.argmax(t['LBL2'].value_counts()) lbl3_max=np.argmax(t['LBL3'].value_counts()) list_max_lbl1.append(lbl1_max) list_max_lbl2.append(lbl2_max) list_max_lbl3.append(lbl3_max) #只留下出現(xiàn)次數(shù)最多的項(xiàng) c = t[t['EVT_LBL']==argmx].drop_duplicates('EVT_LBL') #放入list中 lt.append(c) #構(gòu)造一個(gè)新的df df_train_log_new = pd.concat(lt) #另外又構(gòu)造了三個(gè)特征,LBL1-LBL3分別出現(xiàn)次數(shù)最多的項(xiàng) df_train_log_new['LBL1_MAX']=list_max_lbl1 df_train_log_new['LBL2_MAX']=list_max_lbl2 df_train_log_new['LBL3_MAX']=list_max_lbl3
3.衍生出某天是否發(fā)生的ont-hot新特征
#創(chuàng)造臨時(shí)df,星期三,星期六,星期七,都默認(rèn)置為0 df_day=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values}) df_day['weekday_3']=0 df_day['weekday_6']=0 df_day['weekday_7']=0 #分組統(tǒng)計(jì),有就置為1,沒有置為0 group=df_train_log.groupby(['USRID']) for k in group.groups.keys(): t = group.get_group(k) id=t.USRID.value_counts().index[0] tmp_list=t.occ_dayofweek.value_counts().index for j in tmp_list: if j==3: df_day['weekday_3'].loc[df_tmp.USRID==id]=1 elif j==6: df_day['weekday_6'].loc[df_tmp.USRID==id]=1 elif j==7: df_day['weekday_7'].loc[df_tmp.USRID==id]=1
4.查看用戶一共停留在APP上多少秒,共有幾天看了APP
#首先將日期轉(zhuǎn)化為時(shí)間戳,并賦予一個(gè)新特征 tmp_list=[] for i in df_train_log.OCC_TIM: d=datetime.datetime.strptime(str(i),"%Y-%m-%d %H:%M:%S") evt_time = time.mktime(d.timetuple()) tmp_list.append(evt_time) df_train_log['time']=tmp_list #每下一行減去上一行,得到app停留時(shí)間 df_train_log['diff_time']=df_train_log.time-df_train_log.time.shift(1) #構(gòu)造一個(gè)新的dataFrame,分組得到查看app的天數(shù) df_time=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values}) #有幾天查看 df_time['days']=0 group=df_train_log.groupby(['USRID']) for k in group.groups.keys(): t = group.get_group(k) id=set(t.USRID).pop() df_time['days'].loc[df_time.USRID==id]= len(t.occ_day.value_counts().index) #去掉一些異常時(shí)間戳,比如間隔兩天的相減,肯定不合適,na的也去掉了 df_train_log=df_train_log[(df_train_log.diff_time>0)&(df_train_log.diff_time<8000)] #累計(jì)停留時(shí)間 group_stayTime=df_train_log['diff_time'].groupby(df_train_log['USRID']).sum() #創(chuàng)造新的df df_tmp=pd.DataFrame({'USRID':list(group_stayTime.index.values),'stay_time':list(group_stayTime.values)}) #合并成一個(gè)新的df df=pd.merge(df_time,df_tmp,on=['USRID'],how='left')#合并后,缺失的停留時(shí)間,置為0df.fillna(0,axis=1,inplace=True)
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python數(shù)據(jù)分析:手把手教你用Pandas生成可視化圖表的教程
今天小編就為大家分享一篇Python數(shù)據(jù)分析:手把手教你用Pandas生成可視化圖表的教程,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧2018-12-12Python設(shè)計(jì)模式編程中解釋器模式的簡(jiǎn)單程序示例分享
這篇文章主要介紹了Python設(shè)計(jì)模式編程中解釋器模式的簡(jiǎn)單程序示例分享,解釋器模式強(qiáng)調(diào)用抽象類來(lái)表達(dá)程序中將要實(shí)現(xiàn)的功能,需要的朋友可以參考下2016-03-03Python學(xué)習(xí)小技巧之列表項(xiàng)的推導(dǎo)式與過濾操作
這篇文章主要給大家介紹了Python學(xué)習(xí)小技巧之列表項(xiàng)的推導(dǎo)式與過濾操作的相關(guān)資料,文中介紹的非常詳細(xì),對(duì)大家具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來(lái)一起看看把。2017-05-05Python圖像識(shí)別+KNN求解數(shù)獨(dú)的實(shí)現(xiàn)
這篇文章主要介紹了Python圖像識(shí)別+KNN求解數(shù)獨(dú)的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-11-11python的random模塊及加權(quán)隨機(jī)算法的python實(shí)現(xiàn)方法
下面小編就為大家?guī)?lái)一篇python的random模塊及加權(quán)隨機(jī)算法的python實(shí)現(xiàn)方法。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來(lái)看看吧2017-01-01python Dejavu庫(kù)快速識(shí)別音頻指紋實(shí)例探究
這篇文章主要為大家介紹了python Dejavu庫(kù)快速識(shí)別音頻指紋實(shí)例探究,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2024-01-01實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法
端口掃描器就是向一批端口上發(fā)送請(qǐng)求來(lái)檢測(cè)端口是否打開的程序,這里我們以實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法2016-06-06