欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

淺談dataframe兩列相乘構(gòu)造新特征

 更新時(shí)間:2021年05月18日 11:40:00   作者:所念皆山海  
這篇文章主要介紹了dataframe兩列相乘構(gòu)造新特征,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧

假如我們要構(gòu)建新特征b

目的是從a中篩選出數(shù)值在4~6之間的數(shù)據(jù),如果符合就是True,否則就是False。

那么代碼如下

import pandas as pd
lists=pd.DataFrame({'a':[1,2,3,4,5,6,7,8,9]})
lists['b']=(lists['a']<6).mul(lists['a']>4)

補(bǔ)充:dataframe求兩列的相乘,再將輸出為新的一列

看代碼吧~

df["new"]=df3["rate"]*df3["duration"]

new為新的一列的列名

rate和duration為需要相乘的列

加,減,乘,除都適用!

補(bǔ)充:DataFrame衍生新特征操作

1.DataFrame中某一列的值衍生為新的特征

#將LBL1特征的值衍生為one-hot形式的新特征
piao=df_train_log.LBL1.value_counts().index
#先構(gòu)造一個(gè)臨時(shí)的df
df_tmp=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
#將所有的新特征列都置為0
for i in piao:
    df_tmp['PIAO_'+i]=0
#進(jìn)行分組便利,有這個(gè)特征就置為1,原數(shù)據(jù)每個(gè)USRID有多條記錄,所以分組統(tǒng)計(jì)
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=t.USRID.value_counts().index[0]
    tmp_list=t.LBL1.value_counts().index
    for j in tmp_list:
        df_tmp['PIAO_'+j].loc[df_tmp.USRID==id]=1

2.分組統(tǒng)計(jì),選出同一USRID下該變量中出現(xiàn)次數(shù)最多的值項(xiàng)

group=df_train_log.groupby(['USRID'])
lt=[]
list_max_lbl1=[]
list_max_lbl2=[]
list_max_lbl3=[]
for k in group.groups.keys():
    t = group.get_group(k)
    #通過value_counts找出出現(xiàn)次數(shù)最多的項(xiàng)
    argmx = np.argmax(t['EVT_LBL'].value_counts())
    lbl1_max=np.argmax(t['LBL1'].value_counts())
    lbl2_max=np.argmax(t['LBL2'].value_counts())
    lbl3_max=np.argmax(t['LBL3'].value_counts())
    list_max_lbl1.append(lbl1_max)
    list_max_lbl2.append(lbl2_max)
    list_max_lbl3.append(lbl3_max)
    #只留下出現(xiàn)次數(shù)最多的項(xiàng)
    c = t[t['EVT_LBL']==argmx].drop_duplicates('EVT_LBL')
    #放入list中
    lt.append(c)
#構(gòu)造一個(gè)新的df
df_train_log_new = pd.concat(lt)
#另外又構(gòu)造了三個(gè)特征,LBL1-LBL3分別出現(xiàn)次數(shù)最多的項(xiàng)
df_train_log_new['LBL1_MAX']=list_max_lbl1
df_train_log_new['LBL2_MAX']=list_max_lbl2
df_train_log_new['LBL3_MAX']=list_max_lbl3

3.衍生出某天是否發(fā)生的ont-hot新特征

#創(chuàng)造臨時(shí)df,星期三,星期六,星期七,都默認(rèn)置為0
df_day=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
df_day['weekday_3']=0
df_day['weekday_6']=0
df_day['weekday_7']=0
#分組統(tǒng)計(jì),有就置為1,沒有置為0
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=t.USRID.value_counts().index[0]
    tmp_list=t.occ_dayofweek.value_counts().index
    for j in tmp_list:
        if j==3:
            df_day['weekday_3'].loc[df_tmp.USRID==id]=1
        elif j==6:
            df_day['weekday_6'].loc[df_tmp.USRID==id]=1
        elif j==7:
            df_day['weekday_7'].loc[df_tmp.USRID==id]=1

4.查看用戶一共停留在APP上多少秒,共有幾天看了APP

#首先將日期轉(zhuǎn)化為時(shí)間戳,并賦予一個(gè)新特征
tmp_list=[]
for i in df_train_log.OCC_TIM:
    d=datetime.datetime.strptime(str(i),"%Y-%m-%d %H:%M:%S")
    evt_time = time.mktime(d.timetuple())
    tmp_list.append(evt_time)
df_train_log['time']=tmp_list
#每下一行減去上一行,得到app停留時(shí)間
df_train_log['diff_time']=df_train_log.time-df_train_log.time.shift(1)
#構(gòu)造一個(gè)新的dataFrame,分組得到查看app的天數(shù)
df_time=pd.DataFrame({'USRID':df_train_log.drop_duplicates('USRID').USRID.values})
#有幾天查看
df_time['days']=0
group=df_train_log.groupby(['USRID'])
for k in group.groups.keys():
    t = group.get_group(k)
    id=set(t.USRID).pop()
    df_time['days'].loc[df_time.USRID==id]= len(t.occ_day.value_counts().index)
#去掉一些異常時(shí)間戳,比如間隔兩天的相減,肯定不合適,na的也去掉了
df_train_log=df_train_log[(df_train_log.diff_time>0)&(df_train_log.diff_time<8000)]
#累計(jì)停留時(shí)間
group_stayTime=df_train_log['diff_time'].groupby(df_train_log['USRID']).sum()
#創(chuàng)造新的df
df_tmp=pd.DataFrame({'USRID':list(group_stayTime.index.values),'stay_time':list(group_stayTime.values)})
#合并成一個(gè)新的df
df=pd.merge(df_time,df_tmp,on=['USRID'],how='left')#合并后,缺失的停留時(shí)間,置為0df.fillna(0,axis=1,inplace=True)

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

相關(guān)文章

  • Python數(shù)據(jù)分析:手把手教你用Pandas生成可視化圖表的教程

    Python數(shù)據(jù)分析:手把手教你用Pandas生成可視化圖表的教程

    今天小編就為大家分享一篇Python數(shù)據(jù)分析:手把手教你用Pandas生成可視化圖表的教程,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧
    2018-12-12
  • Python設(shè)計(jì)模式編程中解釋器模式的簡(jiǎn)單程序示例分享

    Python設(shè)計(jì)模式編程中解釋器模式的簡(jiǎn)單程序示例分享

    這篇文章主要介紹了Python設(shè)計(jì)模式編程中解釋器模式的簡(jiǎn)單程序示例分享,解釋器模式強(qiáng)調(diào)用抽象類來(lái)表達(dá)程序中將要實(shí)現(xiàn)的功能,需要的朋友可以參考下
    2016-03-03
  • Python學(xué)習(xí)小技巧之列表項(xiàng)的推導(dǎo)式與過濾操作

    Python學(xué)習(xí)小技巧之列表項(xiàng)的推導(dǎo)式與過濾操作

    這篇文章主要給大家介紹了Python學(xué)習(xí)小技巧之列表項(xiàng)的推導(dǎo)式與過濾操作的相關(guān)資料,文中介紹的非常詳細(xì),對(duì)大家具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面來(lái)一起看看把。
    2017-05-05
  • Python圖像識(shí)別+KNN求解數(shù)獨(dú)的實(shí)現(xiàn)

    Python圖像識(shí)別+KNN求解數(shù)獨(dú)的實(shí)現(xiàn)

    這篇文章主要介紹了Python圖像識(shí)別+KNN求解數(shù)獨(dú)的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2020-11-11
  • Python的turtle繪圖庫(kù)使用基礎(chǔ)

    Python的turtle繪圖庫(kù)使用基礎(chǔ)

    turtle庫(kù)是Python語(yǔ)言中一個(gè)很流行的繪制圖像的函數(shù)庫(kù),想象一個(gè)小烏龜,它根據(jù)一組函數(shù)指令的控制,在這個(gè)平面坐標(biāo)系中移動(dòng),從而在它爬行的路徑上繪制了圖形,需要的朋友可以參考下
    2023-04-04
  • python的random模塊及加權(quán)隨機(jī)算法的python實(shí)現(xiàn)方法

    python的random模塊及加權(quán)隨機(jī)算法的python實(shí)現(xiàn)方法

    下面小編就為大家?guī)?lái)一篇python的random模塊及加權(quán)隨機(jī)算法的python實(shí)現(xiàn)方法。小編覺得挺不錯(cuò)的,現(xiàn)在就分享給大家,也給大家做個(gè)參考。一起跟隨小編過來(lái)看看吧
    2017-01-01
  • python Dejavu庫(kù)快速識(shí)別音頻指紋實(shí)例探究

    python Dejavu庫(kù)快速識(shí)別音頻指紋實(shí)例探究

    這篇文章主要為大家介紹了python Dejavu庫(kù)快速識(shí)別音頻指紋實(shí)例探究,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2024-01-01
  • 徹徹底底地理解Python中的編碼問題

    徹徹底底地理解Python中的編碼問題

    Python處理文本的功能非常強(qiáng)大,但是如果是初學(xué)者,沒有搞清楚python中的編碼機(jī)制,也經(jīng)常會(huì)遇到亂碼或者decode error。本文的目的是簡(jiǎn)明扼要地說(shuō)明python的編碼機(jī)制,并給出一些建議,需要的朋友可以參考下
    2018-10-10
  • 實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法

    實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法

    端口掃描器就是向一批端口上發(fā)送請(qǐng)求來(lái)檢測(cè)端口是否打開的程序,這里我們以實(shí)例探究Python以并發(fā)方式編寫高性能端口掃描器的方法
    2016-06-06
  • PHPMyAdmin及權(quán)限配置

    PHPMyAdmin及權(quán)限配置

    這篇文章主要介紹了PHPMyAdmin及權(quán)限配置,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧
    2014-08-08

最新評(píng)論