pytorch中F.avg_pool1d()和F.avg_pool2d()的使用操作
F.avg_pool1d()數(shù)據(jù)是三維輸入
input維度: (batch_size,channels,width)channel可以看成高度
kenerl維度:(一維:表示width的跨度)channel和輸入的channel一致可以認為是矩陣的高度
假設kernel_size=2,則每倆列相加求平均,stride默認和kernel_size保持一致,越界則丟棄(下面表示1,2列和3,4列相加求平均)
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input) m = F.avg_pool1d(input,kernel_size=2) m tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.0000, 1.0000], [1.0000, 1.0000], [0.0000, 0.5000], [1.0000, 1.0000], [1.0000, 1.0000]]])
假設kenerl_size=3,表示前3列相加求平均,后面的不足3列丟棄
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input) m = F.avg_pool1d(input,kernel_size=3) m tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.], [1.], [0.], [1.], [1.]]]) input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input) m = F.avg_pool1d(input,kernel_size=4) m tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.0000], [1.0000], [0.2500], [1.0000], [1.0000]]])
假設stride=1每次移動一個步伐
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input) m = F.avg_pool1d(input,kernel_size=2,stride=1) m tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [0.0000, 0.0000, 0.5000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000], [1.0000, 1.0000, 1.0000, 1.0000]]]) input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input) m = F.avg_pool1d(input,kernel_size=4,stride=1) m tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.0000, 1.0000], [1.0000, 1.0000], [0.2500, 0.5000], [1.0000, 1.0000], [1.0000, 1.0000]]])
F.avg_pool2d()數(shù)據(jù)是四維輸入
input維度: (batch_size,channels,height,width)
kenerl維度:(二維:表示width的跨度)channel和輸入的channle一致,如果數(shù)據(jù)是三維,則channel為1.(如果只寫一個數(shù)n,kenerl=(n,n))
stride默認和kenerl一致,這是個二維的,所以在height和width上均和kenerl一致,越界同樣丟棄。
跟cnn卷積一致
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input.size()) print(input) m = F.avg_pool2d(input,kernel_size=(4,4)) m torch.Size([1, 5, 5]) tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[0.8125]]]) input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input.size()) print(input) m = F.avg_pool2d(input,kernel_size=(4,4),stride=1) m torch.Size([1, 5, 5]) tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[0.8125, 0.8750], [0.8125, 0.8750]]])
如果求列的平均kenerl=(1,5),此時默認stride=(1,5)
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input.size()) print(input) m = F.avg_pool2d(input,kernel_size=(1,5)) m torch.Size([1, 5, 5]) tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[1.0000], [1.0000], [0.4000], [1.0000], [1.0000]]])
如果求行的平均kenerl=(5,1),此時默認stride=(5,1),用卷積的概念取思考
input = torch.tensor([[1,1,1,1,1],[1,1,1,1,1],[0,0,0,1,1],[1,1,1,1,1],[1,1,1,1,1]]).unsqueeze(0).float() print(input.size()) print(input) m = F.avg_pool2d(input,kernel_size=(5,1)) m torch.Size([1, 5, 5]) tensor([[[1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.], [0., 0., 0., 1., 1.], [1., 1., 1., 1., 1.], [1., 1., 1., 1., 1.]]]) tensor([[[0.8000, 0.8000, 0.8000, 1.0000, 1.0000]]])
對于四維的數(shù)據(jù),channel默認和輸入一致
input=torch.randn(10,3,4,4) m=F.avg_pool2d(input,(4,4)) print(m.size()) torch.Size([10, 3, 1, 1])
補充:PyTorch中AdaptiveAvgPool函數(shù)解析
自適應池化(AdaptiveAvgPool1d):
對輸入信號,提供1維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。
torch.nn.AdaptiveAvgPool1d(output_size) #output_size:輸出尺寸
對輸入信號,提供1維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。
# target output size of 5 m = nn.AdaptiveAvgPool1d(5) input = autograd.Variable(torch.randn(1, 64, 8)) output = m(input)
自適應池化(AdaptiveAvgPool2d):
class torch.nn.AdaptiveAvgPool2d(output_size)
對輸入信號,提供2維的自適應平均池化操作 對于任何輸入大小的輸入,可以將輸出尺寸指定為H*W,但是輸入和輸出特征的數(shù)目不會變化。
參數(shù):
output_size: 輸出信號的尺寸,可以用(H,W)表示H*W的輸出,也可以使用耽擱數(shù)字H表示H*H大小的輸出
# target output size of 5x7 m = nn.AdaptiveAvgPool2d((5,7)) input = autograd.Variable(torch.randn(1, 64, 8, 9)) # target output size of 7x7 (square) m = nn.AdaptiveAvgPool2d(7) input = autograd.Variable(torch.randn(1, 64, 10, 9)) output = m(input)
自適應池化的數(shù)學解釋:
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。
- Pytorch自定義Dataset和DataLoader去除不存在和空數(shù)據(jù)的操作
- pytorch Dataset,DataLoader產(chǎn)生自定義的訓練數(shù)據(jù)案例
- PyTorch實現(xiàn)重寫/改寫Dataset并載入Dataloader
- 一文弄懂Pytorch的DataLoader, DataSet, Sampler之間的關(guān)系
- PyTorch 解決Dataset和Dataloader遇到的問題
- PyTorch 如何自動計算梯度
- 我對PyTorch dataloader里的shuffle=True的理解
- pytorch 帶batch的tensor類型圖像顯示操作
- 解決pytorch下只打印tensor的數(shù)值不打印出device等信息的問題
- Pytorch 如何查看、釋放已關(guān)閉程序占用的GPU資源
- pytorch中的squeeze函數(shù)、cat函數(shù)使用
- Pytorch數(shù)據(jù)讀取之Dataset和DataLoader知識總結(jié)
相關(guān)文章
Python利用xmltodict模塊實現(xiàn)處理XML數(shù)據(jù)
理解和處理XML數(shù)據(jù)在Python中是一項常見任務,xmltodict便是一個Python庫,用于將XML數(shù)據(jù)解析為易于處理的Python字典,下面我們就來學習一下xmltodict庫的具體使用吧2023-11-11DataFrame 將某列數(shù)據(jù)轉(zhuǎn)為數(shù)組的方法
下面小編就為大家分享一篇DataFrame 將某列數(shù)據(jù)轉(zhuǎn)為數(shù)組的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-04-04pandas進行時間數(shù)據(jù)的轉(zhuǎn)換和計算時間差并提取年月日
這篇文章主要介紹了pandas進行時間數(shù)據(jù)的轉(zhuǎn)換和計算時間差并提取年月日,文中通過示例代碼介紹的非常詳細,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2019-07-07