python使用Streamlit庫制作Web可視化頁面

每當(dāng)你對(duì)Excel文件進(jìn)行更改保存,Web頁面還能夠?qū)崟r(shí)進(jìn)行更新,確實(shí)挺不錯(cuò)的。
Streamlit的文檔和教程地址如下。
https://docs.streamlit.io/en/stable/

相關(guān)的API使用可以去文檔中查看,都有詳細(xì)的解釋。
項(xiàng)目一共有三個(gè)文件,程序、圖片、Excel表格數(shù)據(jù)。

數(shù)據(jù)情況如下,某公司年底問卷調(diào)查(虛構(gòu)數(shù)據(jù)),各相關(guān)部門對(duì)生產(chǎn)部門在工作協(xié)作上的打分情況。

有效數(shù)據(jù)總計(jì)約676條,匿名問卷,包含問卷填寫人所屬部門,年齡,評(píng)分。
最后對(duì)各部門參與人數(shù)進(jìn)行匯總計(jì)數(shù)(右側(cè)數(shù)據(jù))。
首先來安裝一下相關(guān)的Python庫,使用百度源。
# 安裝streamlit pip install streamlit -i https://mirror.baidu.com/pypi/simple/ # 安裝Plotly Express pip install plotly_express==0.4.0 -i https://mirror.baidu.com/pypi/simple/ # 安裝xlrd pip install xlrd==1.2.0 -i https://mirror.baidu.com/pypi/simple/
因?yàn)槲覀兊臄?shù)據(jù)文件是xlsx格式,最新版的xlrd,只支持xls文件。
所以需要指定xlrd版本為1.2.0,這樣pandas才能成功讀取數(shù)據(jù)。
命令行終端啟動(dòng)網(wǎng)頁。
# 命令行終端打開文件所在路徑 cd Excel_Webapp # 運(yùn)行網(wǎng)頁 streamlit run app.py
成功以后會(huì)有提示,并且瀏覽器會(huì)自動(dòng)彈出網(wǎng)頁。

如果沒有自動(dòng)彈出,可以直接訪問上圖中的地址。
得到結(jié)果如下,一個(gè)數(shù)據(jù)可視化網(wǎng)頁出來了。

目前只能在本地訪問查看,如果你想放在網(wǎng)上,可以通過服務(wù)器部署,需要自行去研究~
下面我們來看看具體的代碼吧。
import pandas as pd
import streamlit as st
import plotly.express as px
from PIL import Image
# 設(shè)置網(wǎng)頁名稱
st.set_page_config(page_title='調(diào)查結(jié)果')
# 設(shè)置網(wǎng)頁標(biāo)題
st.header('2020年調(diào)查問卷')
# 設(shè)置網(wǎng)頁子標(biāo)題
st.subheader('2020年各部門對(duì)生產(chǎn)部的評(píng)分情況')
導(dǎo)入相關(guān)的Python包,pandas處理數(shù)據(jù),streamlit用來生成網(wǎng)頁,plotly.express則是生成圖表,PIL讀取圖片。

設(shè)置了網(wǎng)頁名稱,以及網(wǎng)頁里的標(biāo)題和子標(biāo)題。
# 讀取數(shù)據(jù) excel_file = '各部門對(duì)生產(chǎn)部的評(píng)分情況.xlsx' sheet_name = 'DATA' df = pd.read_excel(excel_file, sheet_name=sheet_name, usecols='B:D', header=3) # 此處為各部門參加問卷調(diào)查人數(shù) df_participants = pd.read_excel(excel_file, sheet_name=sheet_name, usecols='F:G', header=3) df_participants.dropna(inplace=True) # streamlit的多重選擇(選項(xiàng)數(shù)據(jù)) department = df['部門'].unique().tolist() # streamlit的滑動(dòng)條(年齡數(shù)據(jù)) ages = df['年齡'].unique().tolist()
讀取Excel表格數(shù)據(jù),并且得出年齡分布以及部門情況,一共是有5個(gè)部門。

添加滑動(dòng)條和多重選擇的數(shù)據(jù)選項(xiàng)。
# 滑動(dòng)條, 最大值、最小值、區(qū)間值
age_selection = st.slider('年齡:',
min_value=min(ages),
max_value=max(ages),
value=(min(ages), max(ages)))
# 多重選擇, 默認(rèn)全選
department_selection = st.multiselect('部門:',
department,
default=department)
結(jié)果如下。

年齡是從23至65,部門則是市場(chǎng)、物流、采購(gòu)、銷售、財(cái)務(wù)這幾個(gè)。
由于滑動(dòng)條和多重選擇是可變的,需要根據(jù)過濾條件得出最終數(shù)據(jù)。
# 根據(jù)選擇過濾數(shù)據(jù)
mask = (df['年齡'].between(*age_selection)) & (df['部門'].isin(department_selection))
number_of_result = df[mask].shape[0]
# 根據(jù)篩選條件, 得到有效數(shù)據(jù)
st.markdown(f'*有效數(shù)據(jù): {number_of_result}*')
# 根據(jù)選擇分組數(shù)據(jù)
df_grouped = df[mask].groupby(by=['評(píng)分']).count()[['年齡']]
df_grouped = df_grouped.rename(columns={'年齡': '計(jì)數(shù)'})
df_grouped = df_grouped.reset_index()
得到數(shù)據(jù)便可以繪制柱狀圖了。
# 繪制柱狀圖, 配置相關(guān)參數(shù) bar_chart = px.bar(df_grouped, x='評(píng)分', y='計(jì)數(shù)', text='計(jì)數(shù)', color_discrete_sequence=['#F63366']*len(df_grouped), template='plotly_white') st.plotly_chart(bar_chart)
使用plotly繪制柱狀圖。

當(dāng)我們?cè)诰W(wǎng)頁調(diào)整選項(xiàng)時(shí),有效數(shù)據(jù)和柱狀圖也會(huì)隨之變化。

此外streamlit還可以給網(wǎng)頁添加圖片和交互式表格。
# 添加圖片和交互式表格
col1, col2 = st.beta_columns(2)
image = Image.open('survey.jpg')
col1.image(image,
caption='Designed by 小F / 法納斯特',
use_column_width=True)
col2.dataframe(df[mask], width=300)
得到結(jié)果如下。

可以看到表格有一個(gè)滑動(dòng)條,可以使用鼠標(biāo)滾輪滾動(dòng)查看。
最后便是繪制一個(gè)餅圖啦!
# 繪制餅圖 pie_chart = px.pie(df_participants, title='總的參加人數(shù)', values='人數(shù)', names='公司部門') st.plotly_chart(pie_chart)
結(jié)果如下。

各部門參加問卷調(diào)查的人數(shù),也是一個(gè)可以交互的圖表。

將銷售、市場(chǎng)、物流取消掉,我們就能看出財(cái)務(wù)和采購(gòu)參加問卷調(diào)查的人數(shù)占比情況。
好了,本期的分享就到此結(jié)束了,有興趣的小伙伴可以自行去實(shí)踐學(xué)習(xí)。
代碼及數(shù)據(jù):鏈接:https://pan.baidu.com/s/1ARK7YdVB4O8V678fbPnBNw 密碼:z3m9
以上就是python使用Streamlit庫制作Web可視化頁面的詳細(xì)內(nèi)容,更多關(guān)于python 制作Web可視化頁面的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
詳解OpenCV執(zhí)行連通分量標(biāo)記的方法和分析
在本教程中,您將學(xué)習(xí)如何使用?OpenCV?執(zhí)行連通分量標(biāo)記和分析。具體來說,我們將重點(diǎn)介紹?OpenCV?最常用的連通分量標(biāo)記函數(shù):cv2.connectedComponentsWithStats,感興趣的可以了解一下2022-08-08
pyqt5移動(dòng)鼠標(biāo)顯示坐標(biāo)的方法
今天小編就為大家分享一篇pyqt5移動(dòng)鼠標(biāo)顯示坐標(biāo)的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-06-06
解決python寫入mysql中datetime類型遇到的問題
今天小編就為大家分享一篇解決python寫入mysql中datetime類型遇到的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2018-06-06
Python定時(shí)庫Apscheduler的簡(jiǎn)單使用
Apscheduler是基于Quartz的Python定時(shí)任務(wù)框架,功能上跟Quartz一致,使用上跟Quartz也幾乎一致。下面通過本文給大家介紹Python定時(shí)庫Apscheduler的簡(jiǎn)單使用,感興趣的朋友一起看看吧2021-11-11
Python?web框架實(shí)現(xiàn)增加BasicAuth認(rèn)證詳解
這篇文章主要為大家詳細(xì)介紹了Python如何在web框架中實(shí)現(xiàn)增加BasicAuth認(rèn)證,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以跟隨小編一起了解一下2023-05-05
Python2.x和3.x下maketrans與translate函數(shù)使用上的不同
這篇文章主要介紹了Python2.x和3.x下maketrans與translate函數(shù)使用上的不同,這兩個(gè)函數(shù)建立映射來替換內(nèi)容是Python學(xué)習(xí)當(dāng)中的基礎(chǔ)知識(shí),需要的朋友可以參考下2015-04-04
Django入門優(yōu)缺點(diǎn)及環(huán)境搭建流程
這篇文章主要為大家介紹了Django入門優(yōu)缺點(diǎn)及環(huán)境搭建流程詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-11-11

