欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python 如何做一個識別率百分百的OCR

 更新時間:2021年05月28日 17:11:23   作者:叁公子KCN  
最近在做游戲自動化(測試),也就是游戲腳本了。主要有以下幾個需求識別率百分百、速度要快、模型要小,本文就來著手實現(xiàn)它

寫在前面

當(dāng)然這里說的百分百可能有點夸張,但其實想象一下,游戲里面的某個窗口的字符就是那種樣子,不會變化的。而且識別的字符可能也不需要太多。中文有大幾千個常用字,還有各種符號,其實都不需要。

這里針對的場景很簡單,主要是有以下幾點:

  • 識別的字符不多:只要識別幾十個常用字符即可,比如說26個字母,數(shù)字,還有一些中文。
  • 背景統(tǒng)一,字體一致:我們不是做驗證碼識別,我們要識別的字符都是清晰可見的。
  • 字符和背景易分割:一般來說就是對圖片灰度化之后,黑底白字或者白底黑字這種。

技術(shù)棧

這里用到的主要就是python+opencv了。

  • python3
  • opencv-python

環(huán)境主要是以下的庫:

pip install opencv-python
pip install imutils
pip install matplotlib

實現(xiàn)思路

首先看下圖片的灰度圖。

第一步:二值化,將灰度轉(zhuǎn)換為只有黑白兩種顏色。

第二步:圖像膨脹,因為我們要通過找輪廓算法找到每個字符的輪廓然后分割,如果是字符還好,中文有很多左右偏旁,三點水這種無法將一個整體進(jìn)行分割,這里通過膨脹將中文都黏在一起。

第三步:找輪廓。

第四步:外接矩形。我們需要的字符是一個矩形框,而不是無規(guī)則的。

第五步:過濾字符,這里比如說標(biāo)點符號對我來說沒用,我通過矩形框大小把它過濾掉。

第六步:字符分割,根據(jù)矩形框分割字符。

第七步:構(gòu)造數(shù)據(jù)集,每一類基本上放一兩張圖片就可以。

第八步:向量搜索+生成結(jié)果,根據(jù)數(shù)據(jù)集的圖片,進(jìn)行向量搜索得到識別的標(biāo)簽。然后根據(jù)圖片分割的位置,對識別結(jié)果進(jìn)行排序。

具體實現(xiàn)

讀取圖片

首先先讀取待識別的圖片。

import cv2
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import NoNorm
import imutils
from PIL import Image


img_file = "test.png"
im = cv2.imread(img_file, 0)

使用matplotlib畫圖結(jié)果如下:

二值化

在進(jìn)行二值化之前,首先進(jìn)行灰度分析。

灰度值是在0到255之間,0代表黑色,255代表白色??梢钥吹竭@里背景色偏黑的,基本集中在灰度值30,40附近。而字符偏白,大概在180灰度這里。

這里選擇100作為分割的閾值。

thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]

2值化后效果如下:

圖像膨脹

接下來進(jìn)行一個圖像的縱向膨脹,選擇一個膨脹的維度,這里選擇的是7。

kernel = np.ones((7,1),np.uint8) 
dilation = cv2.dilate(thresh, kernel, iterations=1)

找輪廓

接下來調(diào)用opencv找一下輪廓,

# 找輪廓
cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

接下來我們再讀取一下原圖,繪制輪廓看下輪廓的樣子。

外接矩形

對于輪廓我們可以做外接矩形,這里可以看下外接矩形的效果。

過濾字符

這里過濾字符的原理其實就是將輪廓內(nèi)的顏色填充成黑色。下面的代碼是將高度小于15的輪廓填充成黑色。

for i, c in enumerate(cnts): 
    x, y, w, h = cv2.boundingRect(c) 
    if (h < 15):
        cv2.fillPoly(thresh, pts=[c], color=(0))

填充后可以看到標(biāo)點符號就沒了。

字符分割

因為圖像是個矩陣,最后字符分割就是使用切片進(jìn)行分割。

for c in cnts: 
    x, y, w, h = cv2.boundingRect(c)
    if (h < 15):
        continue
    cropImg = thresh[y:y+h, x:x+w]
    plt.imshow(cropImg)
    plt.show()

構(gòu)造數(shù)據(jù)集

最后我們創(chuàng)建數(shù)據(jù)集進(jìn)行標(biāo)注,就是把上面的都串起來,然后將分割后的圖片保存到文件夾里,并且完成標(biāo)注。

import cv2
import numpy as np
import imutils
from matplotlib import pyplot as plt
import uuid


def split_letters(im):
    # 2值化
    thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]
    # 縱向膨脹
    kernel = np.ones((7, 1), np.uint8)
    dilation = cv2.dilate(thresh, kernel, iterations=1)
    # 找輪廓
    cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)

    # 過濾太小的
    for i, c in enumerate(cnts):
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            cv2.fillPoly(thresh, pts=[c], color=(0))

    # 分割
    char_list = []
    for c in cnts:
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            continue
        cropImg = thresh[y:y + h, x:x + w]
        char_list.append((x, cropImg))
    return char_list


for i in range(1, 10):
    im = cv2.imread(f"test{i}.png", 0)

    for ch in split_letters(im):
        print(ch[0])
        filename = f"ocr_datas/{str(uuid.uuid4())}.png"
        cv2.imwrite(filename, ch[1])

向量搜索(分類)

向量搜索其實就是個最近鄰搜索的問題,我們可以使用sklearn中的KNeighborsClassifier。

訓(xùn)練模型代碼如下:

import os
import numpy as np
from sklearn.neighbors import KNeighborsClassifier
import cv2
import pickle
import json

max_height = 30
max_width = 30


def make_im_template(im):
    template = np.zeros((max_height, max_width))
    offset_height = int((max_height - im.shape[0]) / 2)
    offset_width = int((max_width - im.shape[1]) / 2)
    template[offset_height:offset_height + im.shape[0], offset_width:offset_width + im.shape[1]] = im
    return template

label2index = {}
index2label = {}
X = []
y = []
index = 0
for _dir in os.listdir("ocr_datas"):
    new_dir = "ocr_datas/" + _dir
    if os.path.isdir(new_dir):
        label2index[_dir] = index
        index2label[index] = _dir
        for filename in os.listdir(new_dir):
            if filename.endswith("png"):
                im = cv2.imread(new_dir + "/" + filename, 0)
                tpl = make_im_template(im)  # 生成固定模板
                tpl = tpl / 255  # 歸一化
                X.append(tpl.reshape(max_height*max_width))
                y.append(index)
        index += 1

print(label2index)
print(index2label)

model = KNeighborsClassifier(n_neighbors=1)
model.fit(X, y)

with open("simple_ocr.pickle", "wb") as f:
    pickle.dump(model, f)


with open("simple_index2label.json", "w") as f:
    json.dump(index2label, f)

這里有一點值得說的是如何構(gòu)建圖片的向量,我們分隔的圖片的長和寬是不固定的,這里首先需要使用一個模型,將分隔后的圖片放置到模板的中央。然后將模型轉(zhuǎn)換為一維向量,當(dāng)然還可以做一個歸一化。

生成結(jié)果

最后生成結(jié)果就是還是先分割一遍,然后轉(zhuǎn)換為向量,調(diào)用KNeighborsClassifier模型,找到最匹配的一個作為結(jié)果。當(dāng)然這是識別一個字符的結(jié)果,我們還需要根據(jù)分割的位置進(jìn)行一個排序,才能得到最后的結(jié)果。

import cv2
import numpy as np
import imutils
from sklearn.neighbors import KNeighborsClassifier
import pickle
import json


with open("simple_ocr.pickle", "rb") as f:
    model = pickle.load(f)

with open("simple_ocr_index2label.json", "r") as f:
    index2label = json.load(f)

max_height = 30
max_width = 30


def make_im_template(im):
    template = np.zeros((max_height, max_width))
    offset_height = int((max_height - im.shape[0]) / 2)
    offset_width = int((max_width - im.shape[1]) / 2)
    template[offset_height:offset_height + im.shape[0], offset_width:offset_width + im.shape[1]] = im
    return template.reshape(max_height*max_width)


def split_letters(im):
    # 2值化
    thresh = cv2.threshold(im, 100, 255, cv2.THRESH_BINARY)[1]
    # 縱向膨脹
    kernel = np.ones((7, 1), np.uint8)
    dilation = cv2.dilate(thresh, kernel, iterations=1)
    # 找輪廓
    cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cnts = imutils.grab_contours(cnts)

    # 過濾太小的
    for i, c in enumerate(cnts):
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            cv2.fillPoly(thresh, pts=[c], color=(0))

    # 分割
    char_list = []
    for c in cnts:
        x, y, w, h = cv2.boundingRect(c)
        if h < 15:
            continue
        cropImg = thresh[y:y + h, x:x + w]
        char_list.append((x, cropImg))
    return char_list


def ocr_recognize(fname):
    im = cv2.imread(fname, 0)
    char_list = split_letters(im)

    result = []
    for ch in char_list:
        res = model.predict([make_im_template(ch[1])])[0]  # 識別單個結(jié)果
        result.append({
            "x": ch[0],
            "label": index2label[str(res)]
        })
    result.sort(key=lambda k: (k.get('x', 0)), reverse=False) # 因為是單行的,所以只需要通過x坐標(biāo)進(jìn)行排序。

    return "".join([it["label"] for it in result])


print(ocr_recognize("test1.png"))

以上就是python 如何做一個識別率百分百的OCR的詳細(xì)內(nèi)容,更多關(guān)于python 做一個OCR的資料請關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Python代碼使用 Pyftpdlib實現(xiàn)FTP服務(wù)器功能

    Python代碼使用 Pyftpdlib實現(xiàn)FTP服務(wù)器功能

    FTP 服務(wù)器,在此之前我都是使用Linux的vsftpd軟件包來搭建FTP服務(wù)器的,現(xiàn)在發(fā)現(xiàn)了利用pyftpdlib可以更加簡單的方法即可實現(xiàn)FTP服務(wù)器的功能 ,需要的朋友可以參考下
    2019-07-07
  • 如何用Pythony驗證萬物歸一(考拉咨猜想)

    如何用Pythony驗證萬物歸一(考拉咨猜想)

    考拉咨猜想簡單的來說,就是你隨便給我一個整數(shù),我最后都是會通過固定的規(guī)則演變成"1",萬物歸一.今天我們就用那Python驗證一下這個猜想
    2021-06-06
  • 使用Pyhton 分析酒店針孔攝像頭

    使用Pyhton 分析酒店針孔攝像頭

    這篇文章主要介紹了使用Pyhton 分析酒店針孔攝像頭,本文通過截圖的形式給大家介紹的非常詳細(xì),對大家的工作或?qū)W習(xí)具有一定的參考借鑒價值,需要的朋友可以參考下
    2020-03-03
  • python3.7通過thrift操作hbase的示例代碼

    python3.7通過thrift操作hbase的示例代碼

    HBase是一個分布式的、面向列的開源數(shù)據(jù)庫,其是Apache的Hadoop項目的子項目。這篇文章主要介紹了python3.7通過thrift操作hbase的示例代碼,需要的朋友可以參考下
    2020-01-01
  • 將python代碼打包成.exe文件直接運行的具體步驟

    將python代碼打包成.exe文件直接運行的具體步驟

    小編最近收到了一個小伙伴的問題,就是那么多有趣的代碼,怎么發(fā)給別人,讓沒有python環(huán)境的小伙伴也可以使用呢,本文小編將帶著大家探索如何將自己的python代碼打包成.exe可執(zhí)行文件,一起來看看吧
    2024-02-02
  • python多線程分塊讀取文件

    python多線程分塊讀取文件

    這篇文章主要為大家詳細(xì)介紹了python多線程分塊讀取文件,具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2019-08-08
  • Python3中PyQt5簡單實現(xiàn)文件打開及保存

    Python3中PyQt5簡單實現(xiàn)文件打開及保存

    本文將結(jié)合實例代碼,介紹Python3中PyQt5簡單實現(xiàn)文件打開及保存,具有一定的參考價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2021-06-06
  • Python實現(xiàn)讀取HTML表格 pd.read_html()

    Python實現(xiàn)讀取HTML表格 pd.read_html()

    這篇文章主要介紹了Python實現(xiàn)讀取HTML表格 pd.read_html(),具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2022-07-07
  • python實現(xiàn)人機五子棋

    python實現(xiàn)人機五子棋

    這篇文章主要為大家詳細(xì)介紹了python實現(xiàn)人機五子棋,文中示例代碼介紹的非常詳細(xì),具有一定的參考價值,感興趣的小伙伴們可以參考一下
    2020-03-03
  • python中的decorator的作用詳解

    python中的decorator的作用詳解

    這篇文章主要介紹了python中的decorator的作用詳解,小編覺得挺不錯的,現(xiàn)在分享給大家,也給大家做個參考。一起跟隨小編過來看看吧
    2018-07-07

最新評論