pytorch 如何把圖像數(shù)據(jù)集進(jìn)行劃分成train,test和val
1、手上目前擁有數(shù)據(jù)集是一大坨,沒(méi)有train,test,val的劃分
如圖所示
2、目錄結(jié)構(gòu):
|---data |---dslr |---images |---back_pack |---a.jpg |---b.jpg ...
3、轉(zhuǎn)換后的格式如圖
目錄結(jié)構(gòu)為:
|---datanews |---dslr |---images |---test |---train |---valid |---back_pack |---a.jpg |---b.jpg ...
4、代碼如下:
4.1 先創(chuàng)建同樣結(jié)構(gòu)的層級(jí)結(jié)構(gòu)
4.2 然后講原始數(shù)據(jù)按照比例劃分
4.3 移入到對(duì)應(yīng)的文件目錄里面
import os, random, shutil def make_dir(source, target): ''' 創(chuàng)建和源文件相似的文件路徑函數(shù) :param source: 源文件位置 :param target: 目標(biāo)文件位置 ''' dir_names = os.listdir(source) for names in dir_names: for i in ['train', 'valid', 'test']: path = target + '/' + i + '/' + names if not os.path.exists(path): os.makedirs(path) def divideTrainValiTest(source, target): ''' 創(chuàng)建和源文件相似的文件路徑 :param source: 源文件位置 :param target: 目標(biāo)文件位置 ''' # 得到源文件下的種類(lèi) pic_name = os.listdir(source) # 對(duì)于每一類(lèi)里的數(shù)據(jù)進(jìn)行操作 for classes in pic_name: # 得到這一種類(lèi)的圖片的名字 pic_classes_name = os.listdir(os.path.join(source, classes)) random.shuffle(pic_classes_name) # 按照8:1:1比例劃分 train_list = pic_classes_name[0:int(0.8 * len(pic_classes_name))] valid_list = pic_classes_name[int(0.8 * len(pic_classes_name)):int(0.9 * len(pic_classes_name))] test_list = pic_classes_name[int(0.9 * len(pic_classes_name)):] # 對(duì)于每個(gè)圖片,移入到對(duì)應(yīng)的文件夾里面 for train_pic in train_list: shutil.copyfile(source + '/' + classes + '/' + train_pic, target + '/train/' + classes + '/' + train_pic) for validation_pic in valid_list: shutil.copyfile(source + '/' + classes + '/' + validation_pic, target + '/valid/' + classes + '/' + validation_pic) for test_pic in test_list: shutil.copyfile(source + '/' + classes + '/' + test_pic, target + '/test/' + classes + '/' + test_pic) if __name__ == '__main__': filepath = r'../data/dslr/images' dist = r'../datanews/dslr/images' make_dir(filepath, dist) divideTrainValiTest(filepath, dist)
補(bǔ)充:pytorch中數(shù)據(jù)集的劃分方法及eError: take(): argument 'index' (position 1) must be Tensor, not numpy.ndarray錯(cuò)誤原因
在使用pytorch框架時(shí),難免需要對(duì)數(shù)據(jù)集進(jìn)行訓(xùn)練集和驗(yàn)證集的劃分,一般使用sklearn.model_selection中的train_test_split方法
該方法使用如下:
from sklearn.model_selection import train_test_split import numpy as np import torch import torch.autograd import Variable from torch.utils.data import DataLoader traindata = np.load(train_path) # image_num * W * H trainlabel = np.load(train_label_path) train_data = traindata[:, np.newaxis, ...] train_label_data = trainlabel[:, np.newaxis, ...] x_tra, x_val, y_tra, y_val = train_test_split(train_data, train_label_data, test_size=0.1, random_state=0) # 訓(xùn)練集和驗(yàn)證集使用9:1 x_tra = Variable(torch.from_numpy(x_tra)) x_tra = x_tra.float() y_tra = Variable(torch.from_numpy(y_tra)) y_tra = y_tra.float() x_val = Variable(torch.from_numpy(x_val)) x_val = x_val.float() y_val = Variable(torch.from_numpy(y_val)) y_val = y_val.float() # 訓(xùn)練集的DataLoader traindataset = torch.utils.data.TensorDataset(x_tra, y_tra) trainloader = DataLoader(dataset=traindataset, num_workers=opt.threads, batch_size=8, shuffle=True) # 驗(yàn)證集的DataLoader validataset = torch.utils.data.TensorDataset(x_val, y_val) valiloader = DataLoader(dataset=validataset, num_workers=opt.threads, batch_size=opt.batchSize, shuffle=True)
注意:如果按照如下方式使用,就會(huì)報(bào)eError: take(): argument 'index' (position 1) must be Tensor, not numpy.ndarray錯(cuò)誤
from sklearn.model_selection import train_test_split import numpy as np import torch import torch.autograd import Variable from torch.utils.data import DataLoader traindata = np.load(train_path) # image_num * W * H trainlabel = np.load(train_label_path) train_data = traindata[:, np.newaxis, ...] train_label_data = trainlabel[:, np.newaxis, ...] x_train = Variable(torch.from_numpy(train_data)) x_train = x_train.float() y_train = Variable(torch.from_numpy(train_label_data)) y_train = y_train.float() # 將原始的訓(xùn)練數(shù)據(jù)集分為訓(xùn)練集和驗(yàn)證集,后面就可以使用早停機(jī)制 x_tra, x_val, y_tra, y_val = train_test_split(x_train, y_train, test_size=0.1) # 訓(xùn)練集和驗(yàn)證集使用9:1
報(bào)錯(cuò)原因:
train_test_split方法接受的x_train,y_train格式應(yīng)該為numpy.ndarray 而不應(yīng)該是Tensor,這點(diǎn)需要注意。
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。
相關(guān)文章
Python標(biāo)準(zhǔn)庫(kù)calendar的使用方法
本文主要介紹了Python標(biāo)準(zhǔn)庫(kù)calendar的使用方法,calendar模塊主要由Calendar類(lèi)與一些模塊方法構(gòu)成,Calendar類(lèi)又衍生了一些子孫類(lèi)來(lái)幫助我們實(shí)現(xiàn)一些特殊的功能,感興趣的可以了解一下2021-11-11python基于concurrent模塊實(shí)現(xiàn)多線程
這篇文章主要介紹了python基于concurrent模塊實(shí)現(xiàn)多線程,幫助大家更好的理解和學(xué)習(xí)使用python,感興趣的朋友可以了解下2021-04-04Python使用pyfinance包進(jìn)行證券收益分析
在查找如何使用Python實(shí)現(xiàn)滾動(dòng)回歸時(shí),發(fā)現(xiàn)一個(gè)很有用的量化金融包——pyfinance。顧名思義,pyfinance是為投資管理和證券收益分析而構(gòu)建的Python分析包,主要是對(duì)面向定量金融的現(xiàn)有包進(jìn)行補(bǔ)充,如pyfolio和pandas等。pyfinance包含六個(gè)模塊,下面將一一介紹2021-11-11Python pandas實(shí)現(xiàn)excel工作表合并功能詳解
這篇文章主要介紹了Python pandas實(shí)現(xiàn)excel工作表合并功能以及相關(guān)實(shí)例代碼,需要的朋友們參考學(xué)習(xí)下。2019-08-08python深度學(xué)習(xí)人工智能BackPropagation鏈?zhǔn)椒▌t
這篇文章主要為大家介紹了python深度學(xué)習(xí)人工智能BackPropagation鏈?zhǔn)椒▌t的示例詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助2021-11-11