欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

淺談Pytorch 定義的網(wǎng)絡結(jié)構(gòu)層能否重復使用

 更新時間:2021年06月01日 14:19:16   作者:idotc  
這篇文章主要介紹了Pytorch定義的網(wǎng)絡結(jié)構(gòu)層能否重復使用的操作,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教

前言:最近在構(gòu)建網(wǎng)絡的時候,有一些層參數(shù)一樣,于是就沒有定義新的層,直接重復使用了原來已經(jīng)有的層,發(fā)現(xiàn)效果和模型大小都沒有什么變化,心中產(chǎn)生了疑問:定義的網(wǎng)絡結(jié)構(gòu)層能否重復使用?因此接下來利用了一個小模型網(wǎng)絡實驗了一下。

一、網(wǎng)絡結(jié)構(gòu)一:(連續(xù)使用相同的層)

1、網(wǎng)絡結(jié)構(gòu)如下所示:

class Cnn(nn.Module):
    def __init__(self):
        super(Cnn, self).__init__()
        self.conv1 = nn.Sequential(
          nn.Conv2d(
            in_channels = 3,  #(, 64, 64, 3)
            out_channels = 16,
            kernel_size = 3,
            stride = 1,
            padding = 1
          ),   ##( , 64, 64, 16)
          nn.ReLU(),
          nn.MaxPool2d(kernel_size = 2)
        )  ##( , 32, 32, 16)
        self.conv2 = nn.Sequential(
          nn.Conv2d(16,32,3,1,1),
          nn.ReLU(),
          nn.MaxPool2d(2)
        )
        self.conv3 = nn.Sequential(
          nn.Conv2d(32,64,3,1,1),
          nn.ReLU(),
          nn.MaxPool2d(2)
        )
        self.conv4 = nn.Sequential(
          nn.Conv2d(64,64,3,1,1),
          nn.BatchNorm2d(64),
          nn.ReLU(),
        )
        self.out = nn.Linear(64*8*8, 6)
    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = x.view(x.size(0),-1)
        out = self.out(x)
        return out

定義了一個卷積層conv4,接下來圍繞著這個conv4做一些變化。打印一下網(wǎng)絡結(jié)構(gòu):

和想象中的一樣,其中

nn.BatchNorm2d # 對應上面的 module.conv4.1.*

激活層沒有參數(shù)所以直接跳過

2、改變一下forward():

連續(xù)使用兩個conv4層:

def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv4(x)
        x = x.view(x.size(0),-1)
        out = self.out(x)
        return out

打印網(wǎng)絡結(jié)構(gòu):

和1.1中的結(jié)構(gòu)一樣,conv4沒有生效。

二、網(wǎng)絡結(jié)構(gòu)二:(間斷使用相同的層)

網(wǎng)絡結(jié)構(gòu)多定義一個和conv4一樣的層conv5,同時間斷使用conv4:

    self.conv4 = nn.Sequential(
      nn.Conv2d(64,64,3,1,1),
      nn.BatchNorm2d(64),
      nn.ReLU(),
    )
    self.conv5 = nn.Sequential(
      nn.Conv2d(64,64,3,1,1),
      nn.BatchNorm2d(64),
      nn.ReLU(),
    )
    self.out = nn.Linear(64*8*8, 6)
def forward(self, x):
    x = self.conv1(x)
    x = self.conv2(x)
    x = self.conv3(x)
    x = self.conv4(x)
    x = self.conv5(x)
    x = self.conv4(x)
    x = x.view(x.size(0),-1)
    out = self.out(x)
    return out

打印網(wǎng)絡結(jié)構(gòu):

果不其然,新定義的conv5有效,conv4還是沒有生效。

本來以為,使用重復定義的層會像conv4.0,conv4.1,…這樣下去,看樣子是不能重復使用定義的層。

Pytorch_5.7 使用重復元素的網(wǎng)絡--VGG

5.7.1 VGG塊

VGG引入了Block的概念 作為模型的基礎模塊

import time
import torch
from torch import nn, optim
import pytorch_deep as pyd
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def vgg_block(num_convs, in_channels, out_channels):
    blk = []
    for i in range(num_convs):
        if i == 0:
            blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))
        else:
            blk.append(nn.Conv2d(out_channels, out_channels,kernel_size=3, padding=1))
        blk.append(nn.ReLU())
    blk.append(nn.MaxPool2d(kernel_size=2, stride=2)) # 這⾥會使寬⾼減半
    return nn.Sequential(*blk)

實現(xiàn)VGG_11網(wǎng)絡

8個卷積層和3個全連接

def vgg_11(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷積層部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每經(jīng)過⼀個vgg_block都會使寬⾼減半
        net.add_module("vgg_block_" + str(i+1),vgg_block(num_convs, in_channels, out_channels))
    # 全連接層部分
    net.add_module("fc", nn.Sequential(
                    pyd.FlattenLayer(),
                    nn.Linear(fc_features,fc_hidden_units),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Linear(fc_hidden_units,fc_hidden_units),
                    nn.ReLU(),
                    nn.Dropout(0.5),
                    nn.Linear(fc_hidden_units, 10)
                    ))
    return net
ratio = 8
small_conv_arch = [(1, 1, 64//ratio), (1, 64//ratio, 128//ratio),(2, 128//ratio, 256//ratio),(2, 256//ratio, 512//ratio), (2, 512//ratio,512//ratio)]
fc_features = 512 * 7 * 7 # c *
fc_hidden_units = 4096 # 任意
net = vgg_11(small_conv_arch, fc_features // ratio, fc_hidden_units //ratio)
print(net)
Sequential(
  (vgg_block_1): Sequential(
    (0): Conv2d(1, 8, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_2): Sequential(
    (0): Conv2d(8, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_3): Sequential(
    (0): Conv2d(16, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_4): Sequential(
    (0): Conv2d(32, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (vgg_block_5): Sequential(
    (0): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU()
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU()
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (fc): Sequential(
    (0): FlattenLayer()
    (1): Linear(in_features=3136, out_features=512, bias=True)
    (2): ReLU()
    (3): Dropout(p=0.5)
    (4): Linear(in_features=512, out_features=512, bias=True)
    (5): ReLU()
    (6): Dropout(p=0.5)
    (7): Linear(in_features=512, out_features=10, bias=True)
  )
)

訓練數(shù)據(jù)

batch_size = 32
# 如出現(xiàn)“out of memory”的報錯信息,可減⼩batch_size或resize
train_iter, test_iter = pyd.load_data_fashion_mnist(batch_size,resize=224)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
pyd.train_ch5(net, train_iter, test_iter, batch_size, optimizer,device, num_epochs)
training on  cuda
epoch 1, loss 0.5166, train acc 0.810, test acc 0.872,time 57.6 sec
epoch 2, loss 0.1557, train acc 0.887, test acc 0.902,time 57.9 sec
epoch 3, loss 0.0916, train acc 0.900, test acc 0.907,time 57.7 sec
epoch 4, loss 0.0609, train acc 0.912, test acc 0.915,time 57.6 sec
epoch 5, loss 0.0449, train acc 0.919, test acc 0.914,time 57.4 sec

以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。

相關文章

最新評論