欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python實(shí)現(xiàn)A*尋路算法

 更新時(shí)間:2021年06月12日 11:14:22   作者:marble_xu  
A*算法可以顯示尋路圖,兩點(diǎn)之間尋找最短路徑,本文使用Python實(shí)現(xiàn),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下

A* 算法簡(jiǎn)介

A* 算法需要維護(hù)兩個(gè)數(shù)據(jù)結(jié)構(gòu):OPEN 集和 CLOSED 集。OPEN 集包含所有已搜索到的待檢測(cè)節(jié)點(diǎn)。初始狀態(tài),OPEN集僅包含一個(gè)元素:開始節(jié)點(diǎn)。CLOSED集包含已檢測(cè)的節(jié)點(diǎn)。初始狀態(tài),CLOSED集為空。每個(gè)節(jié)點(diǎn)還包含一個(gè)指向父節(jié)點(diǎn)的指針,以確定追蹤關(guān)系。

A* 算法會(huì)給每個(gè)搜索到的節(jié)點(diǎn)計(jì)算一個(gè)G+H 的和值F:

  • F = G + H
  • G:是從開始節(jié)點(diǎn)到當(dāng)前節(jié)點(diǎn)的移動(dòng)量。假設(shè)開始節(jié)點(diǎn)到相鄰節(jié)點(diǎn)的移動(dòng)量為1,該值會(huì)隨著離開始點(diǎn)越來(lái)越遠(yuǎn)而增大。
  • H:是從當(dāng)前節(jié)點(diǎn)到目標(biāo)節(jié)點(diǎn)的移動(dòng)量估算值。
    • 如果允許向4鄰域的移動(dòng),使用曼哈頓距離。
    • 如果允許向8鄰域的移動(dòng),使用對(duì)角線距離。

算法有一個(gè)主循環(huán),重復(fù)下面步驟直到到達(dá)目標(biāo)節(jié)點(diǎn):
1 每次從OPEN集中取一個(gè)最優(yōu)節(jié)點(diǎn)n(即F值最小的節(jié)點(diǎn))來(lái)檢測(cè)。
2 將節(jié)點(diǎn)n從OPEN集中移除,然后添加到CLOSED集中。
3 如果n是目標(biāo)節(jié)點(diǎn),那么算法結(jié)束。
4 否則嘗試添加節(jié)點(diǎn)n的所有鄰節(jié)點(diǎn)n'。

  • 鄰節(jié)點(diǎn)在CLOSED集中,表示它已被檢測(cè)過(guò),則無(wú)需再添加。
  • 鄰節(jié)點(diǎn)在OPEN集中:
    • 如果重新計(jì)算的G值比鄰節(jié)點(diǎn)保存的G值更小,則需要更新這個(gè)鄰節(jié)點(diǎn)的G值和F值,以及父節(jié)點(diǎn);
    • 否則不做操作
  • 否則將該鄰節(jié)點(diǎn)加入OPEN集,設(shè)置其父節(jié)點(diǎn)為n,并設(shè)置它的G值和F值。

有一點(diǎn)需要注意,如果開始節(jié)點(diǎn)到目標(biāo)節(jié)點(diǎn)實(shí)際是不連通的,即無(wú)法從開始節(jié)點(diǎn)移動(dòng)到目標(biāo)節(jié)點(diǎn),那算法在第1步判斷獲取到的節(jié)點(diǎn)n為空,就會(huì)退出

關(guān)鍵代碼介紹

保存基本信息的地圖類

地圖類用于隨機(jī)生成一個(gè)供尋路算法工作的基礎(chǔ)地圖信息

先創(chuàng)建一個(gè)map類, 初始化參數(shù)設(shè)置地圖的長(zhǎng)度和寬度,并設(shè)置保存地圖信息的二維數(shù)據(jù)map的值為0, 值為0表示能移動(dòng)到該節(jié)點(diǎn)。

class Map():
	def __init__(self, width, height):
		self.width = width
		self.height = height
		self.map = [[0 for x in range(self.width)] for y in range(self.height)]

在map類中添加一個(gè)創(chuàng)建不能通過(guò)節(jié)點(diǎn)的函數(shù),節(jié)點(diǎn)值為1表示不能移動(dòng)到該節(jié)點(diǎn)。

	def createBlock(self, block_num):
		for i in range(block_num):
			x, y = (randint(0, self.width-1), randint(0, self.height-1))
			self.map[y][x] = 1

在map類中添加一個(gè)顯示地圖的函數(shù),可以看到,這邊只是簡(jiǎn)單的打印出所有節(jié)點(diǎn)的值,值為0或1的意思上面已經(jīng)說(shuō)明,在后面顯示尋路算法結(jié)果時(shí),會(huì)使用到值2,表示一條從開始節(jié)點(diǎn)到目標(biāo)節(jié)點(diǎn)的路徑。

	def showMap(self):
		print("+" * (3 * self.width + 2))
		for row in self.map:
			s = '+'
			for entry in row:
				s += ' ' + str(entry) + ' '
			s += '+'
			print(s)
		print("+" * (3 * self.width + 2))

添加一個(gè)隨機(jī)獲取可移動(dòng)節(jié)點(diǎn)的函數(shù)

	def generatePos(self, rangeX, rangeY):
		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		while self.map[y][x] == 1:
			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		return (x , y)

搜索到的節(jié)點(diǎn)類

每一個(gè)搜索到將到添加到OPEN集的節(jié)點(diǎn),都會(huì)創(chuàng)建一個(gè)下面的節(jié)點(diǎn)類,保存有entry的位置信息(x,y),計(jì)算得到的G值和F值,和該節(jié)點(diǎn)的父節(jié)點(diǎn)(pre_entry)。

class SearchEntry():
	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
		self.x = x
		self.y = y
		# cost move form start entry to this entry
		self.g_cost = g_cost
		self.f_cost = f_cost
		self.pre_entry = pre_entry
	
	def getPos(self):
		return (self.x, self.y)

算法主函數(shù)介紹

下面就是上面算法主循環(huán)介紹的代碼實(shí)現(xiàn),OPEN集和CLOSED集的數(shù)據(jù)結(jié)構(gòu)使用了字典,在一般情況下,查找,添加和刪除節(jié)點(diǎn)的時(shí)間復(fù)雜度為O(1), 遍歷的時(shí)間復(fù)雜度為O(n), n為字典中對(duì)象數(shù)目。

def AStarSearch(map, source, dest):
	...
	openlist = {}
	closedlist = {}
	location = SearchEntry(source[0], source[1], 0.0)
	dest = SearchEntry(dest[0], dest[1], 0.0)
	openlist[source] = location
	while True:
		location = getFastPosition(openlist)
		if location is None:
			# not found valid path
			print("can't find valid path")
			break;
		
		if location.x == dest.x and location.y == dest.y:
			break
		
		closedlist[location.getPos()] = location
		openlist.pop(location.getPos())
		addAdjacentPositions(map, location, dest, openlist, closedlist)
	
	#mark the found path at the map
	while location is not None:
		map.map[location.y][location.x] = 2
		location = location.pre_entry

我們按照算法主循環(huán)的實(shí)現(xiàn)來(lái)一個(gè)個(gè)講解用到的函數(shù)。
下面函數(shù)就是從OPEN集中獲取一個(gè)F值最小的節(jié)點(diǎn),如果OPEN集會(huì)空,則返回None。

	# find a least cost position in openlist, return None if openlist is empty
	def getFastPosition(openlist):
		fast = None
		for entry in openlist.values():
			if fast is None:
				fast = entry
			elif fast.f_cost > entry.f_cost:
				fast = entry
		return fast

addAdjacentPositions 函數(shù)對(duì)應(yīng)算法主函數(shù)循環(huán)介紹中的嘗試添加節(jié)點(diǎn)n的所有鄰節(jié)點(diǎn)n'。

	# add available adjacent positions
	def addAdjacentPositions(map, location, dest, openlist, closedlist):
		poslist = getPositions(map, location)
		for pos in poslist:
			# if position is already in closedlist, do nothing
			if isInList(closedlist, pos) is None:
				findEntry = isInList(openlist, pos)
				h_cost = calHeuristic(pos, dest)
				g_cost = location.g_cost + getMoveCost(location, pos)
				if findEntry is None :
					# if position is not in openlist, add it to openlist
					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
				elif findEntry.g_cost > g_cost:
					# if position is in openlist and cost is larger than current one,
					# then update cost and previous position
					findEntry.g_cost = g_cost
					findEntry.f_cost = g_cost + h_cost
					findEntry.pre_entry = location

getPositions 函數(shù)獲取到所有能夠移動(dòng)的節(jié)點(diǎn),這里提供了2種移動(dòng)的方式:

  • 允許上,下,左,右 4鄰域的移動(dòng)
  • 允許上,下,左,右,左上,右上,左下,右下 8鄰域的移動(dòng)
	def getNewPosition(map, locatioin, offset):
		x,y = (location.x + offset[0], location.y + offset[1])
		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:
			return None
		return (x, y)
		
	def getPositions(map, location):
		# use four ways or eight ways to move
		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
		poslist = []
		for offset in offsets:
			pos = getNewPosition(map, location, offset)
			if pos is not None:			
				poslist.append(pos)
		return poslist

isInList 函數(shù)判斷節(jié)點(diǎn)是否在OPEN集 或CLOSED集中

	# check if the position is in list
	def isInList(list, pos):
		if pos in list:
			return list[pos]
		return None

calHeuristic 函數(shù)簡(jiǎn)單得使用了曼哈頓距離,這個(gè)后續(xù)可以進(jìn)行優(yōu)化。
getMoveCost 函數(shù)根據(jù)是否是斜向移動(dòng)來(lái)計(jì)算消耗(斜向就是2的開根號(hào),約等于1.4)

	# imporve the heuristic distance more precisely in future
	def calHeuristic(pos, dest):
		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
		
	def getMoveCost(location, pos):
		if location.x != pos[0] and location.y != pos[1]:
			return 1.4
		else:
			return 1

代碼的初始化

可以調(diào)整地圖的長(zhǎng)度,寬度和不可移動(dòng)節(jié)點(diǎn)的數(shù)目。
可以調(diào)整開始節(jié)點(diǎn)和目標(biāo)節(jié)點(diǎn)的取值范圍。

WIDTH = 10
HEIGHT = 10
BLOCK_NUM = 15
map = Map(WIDTH, HEIGHT)
map.createBlock(BLOCK_NUM)
map.showMap()

source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
print("source:", source)
print("dest:", dest)
AStarSearch(map, source, dest)
map.showMap()

執(zhí)行的效果圖如下,第一個(gè)表示隨機(jī)生成的地圖,值為1的節(jié)點(diǎn)表示不能移動(dòng)到該節(jié)點(diǎn)。
第二個(gè)圖中值為2的節(jié)點(diǎn)表示找到的路徑。

在這里插入圖片描述

完整代碼

使用python3.7編譯

from random import randint

class SearchEntry():
	def __init__(self, x, y, g_cost, f_cost=0, pre_entry=None):
		self.x = x
		self.y = y
		# cost move form start entry to this entry
		self.g_cost = g_cost
		self.f_cost = f_cost
		self.pre_entry = pre_entry
	
	def getPos(self):
		return (self.x, self.y)

class Map():
	def __init__(self, width, height):
		self.width = width
		self.height = height
		self.map = [[0 for x in range(self.width)] for y in range(self.height)]
	
	def createBlock(self, block_num):
		for i in range(block_num):
			x, y = (randint(0, self.width-1), randint(0, self.height-1))
			self.map[y][x] = 1
	
	def generatePos(self, rangeX, rangeY):
		x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		while self.map[y][x] == 1:
			x, y = (randint(rangeX[0], rangeX[1]), randint(rangeY[0], rangeY[1]))
		return (x , y)

	def showMap(self):
		print("+" * (3 * self.width + 2))

		for row in self.map:
			s = '+'
			for entry in row:
				s += ' ' + str(entry) + ' '
			s += '+'
			print(s)

		print("+" * (3 * self.width + 2))
	

def AStarSearch(map, source, dest):
	def getNewPosition(map, locatioin, offset):
		x,y = (location.x + offset[0], location.y + offset[1])
		if x < 0 or x >= map.width or y < 0 or y >= map.height or map.map[y][x] == 1:
			return None
		return (x, y)
		
	def getPositions(map, location):
		# use four ways or eight ways to move
		offsets = [(-1,0), (0, -1), (1, 0), (0, 1)]
		#offsets = [(-1,0), (0, -1), (1, 0), (0, 1), (-1,-1), (1, -1), (-1, 1), (1, 1)]
		poslist = []
		for offset in offsets:
			pos = getNewPosition(map, location, offset)
			if pos is not None:			
				poslist.append(pos)
		return poslist
	
	# imporve the heuristic distance more precisely in future
	def calHeuristic(pos, dest):
		return abs(dest.x - pos[0]) + abs(dest.y - pos[1])
		
	def getMoveCost(location, pos):
		if location.x != pos[0] and location.y != pos[1]:
			return 1.4
		else:
			return 1

	# check if the position is in list
	def isInList(list, pos):
		if pos in list:
			return list[pos]
		return None
	
	# add available adjacent positions
	def addAdjacentPositions(map, location, dest, openlist, closedlist):
		poslist = getPositions(map, location)
		for pos in poslist:
			# if position is already in closedlist, do nothing
			if isInList(closedlist, pos) is None:
				findEntry = isInList(openlist, pos)
				h_cost = calHeuristic(pos, dest)
				g_cost = location.g_cost + getMoveCost(location, pos)
				if findEntry is None :
					# if position is not in openlist, add it to openlist
					openlist[pos] = SearchEntry(pos[0], pos[1], g_cost, g_cost+h_cost, location)
				elif findEntry.g_cost > g_cost:
					# if position is in openlist and cost is larger than current one,
					# then update cost and previous position
					findEntry.g_cost = g_cost
					findEntry.f_cost = g_cost + h_cost
					findEntry.pre_entry = location
	
	# find a least cost position in openlist, return None if openlist is empty
	def getFastPosition(openlist):
		fast = None
		for entry in openlist.values():
			if fast is None:
				fast = entry
			elif fast.f_cost > entry.f_cost:
				fast = entry
		return fast

	openlist = {}
	closedlist = {}
	location = SearchEntry(source[0], source[1], 0.0)
	dest = SearchEntry(dest[0], dest[1], 0.0)
	openlist[source] = location
	while True:
		location = getFastPosition(openlist)
		if location is None:
			# not found valid path
			print("can't find valid path")
			break;
		
		if location.x == dest.x and location.y == dest.y:
			break
		
		closedlist[location.getPos()] = location
		openlist.pop(location.getPos())
		addAdjacentPositions(map, location, dest, openlist, closedlist)
		
	#mark the found path at the map
	while location is not None:
		map.map[location.y][location.x] = 2
		location = location.pre_entry	

	
WIDTH = 10
HEIGHT = 10
BLOCK_NUM = 15
map = Map(WIDTH, HEIGHT)
map.createBlock(BLOCK_NUM)
map.showMap()

source = map.generatePos((0,WIDTH//3),(0,HEIGHT//3))
dest = map.generatePos((WIDTH//2,WIDTH-1),(HEIGHT//2,HEIGHT-1))
print("source:", source)
print("dest:", dest)
AStarSearch(map, source, dest)
map.showMap()

到此這篇關(guān)于python實(shí)現(xiàn)A*尋路算法的文章就介紹到這了,更多相關(guān)python A*尋路算法內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • 帶你了解Python語(yǔ)言的神奇世界

    帶你了解Python語(yǔ)言的神奇世界

    大家好,本篇文章主要講的是帶你了解Python語(yǔ)言的神奇世界,感興趣的同學(xué)趕快來(lái)看一看吧,對(duì)你有幫助的話記得收藏一下,方便下次瀏覽
    2021-12-12
  • python實(shí)現(xiàn)教務(wù)管理系統(tǒng)

    python實(shí)現(xiàn)教務(wù)管理系統(tǒng)

    這篇文章主要介紹了python實(shí)現(xiàn)教務(wù)管理系統(tǒng),實(shí)現(xiàn)了管理員、教職工、學(xué)生三種不同身份的操作,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2018-03-03
  • Python操作Redis數(shù)據(jù)庫(kù)的超詳細(xì)教程

    Python操作Redis數(shù)據(jù)庫(kù)的超詳細(xì)教程

    大家應(yīng)該都知道redis是一個(gè)基于內(nèi)存的高效的鍵值型非關(guān)系數(shù)據(jù)庫(kù),下面這篇文章主要給大家介紹了關(guān)于Python操作Redis的相關(guān)資料,文中通過(guò)實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-06-06
  • Python實(shí)現(xiàn)的計(jì)算馬氏距離算法示例

    Python實(shí)現(xiàn)的計(jì)算馬氏距離算法示例

    這篇文章主要介紹了Python實(shí)現(xiàn)的計(jì)算馬氏距離算法,簡(jiǎn)單說(shuō)明了馬氏距離算法原理,并結(jié)合實(shí)例形式分析了Python實(shí)現(xiàn)與使用馬氏距離算法的相關(guān)操作技巧,需要的朋友可以參考下
    2018-04-04
  • python密碼學(xué)對(duì)稱和非對(duì)稱密碼教程

    python密碼學(xué)對(duì)稱和非對(duì)稱密碼教程

    這篇文章主要為大家介紹了python密碼學(xué)對(duì)稱和非對(duì)稱密碼教程,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪
    2022-05-05
  • Python中的異常處理簡(jiǎn)明介紹

    Python中的異常處理簡(jiǎn)明介紹

    這篇文章主要介紹了Python中的異常處理簡(jiǎn)明介紹,本文講解了try-except檢測(cè)異常、上下文管理器(with…as…語(yǔ)句)、raise引發(fā)異常、斷言等內(nèi)容,需要的朋友可以參考下
    2015-04-04
  • Python基礎(chǔ)之函數(shù)的定義與使用示例

    Python基礎(chǔ)之函數(shù)的定義與使用示例

    這篇文章主要介紹了Python基礎(chǔ)之函數(shù)的定義與使用,結(jié)合實(shí)例形式分析了Python函數(shù)的定義、參數(shù)、變量作用域、返回值等相關(guān)概念與使用技巧,需要的朋友可以參考下
    2019-03-03
  • 詳解如何使用Python實(shí)現(xiàn)復(fù)制粘貼的功能

    詳解如何使用Python實(shí)現(xiàn)復(fù)制粘貼的功能

    pandas?里面有一個(gè)?pd.read_clipboard?函數(shù),可以根據(jù)你復(fù)制的內(nèi)容生成DataFrame。本文就利用這個(gè)函數(shù)實(shí)現(xiàn)復(fù)制粘貼的功能,感興趣的可以了解一下
    2023-01-01
  • 解決pycharm導(dǎo)入本地py文件時(shí),模塊下方出現(xiàn)紅色波浪線的問題

    解決pycharm導(dǎo)入本地py文件時(shí),模塊下方出現(xiàn)紅色波浪線的問題

    這篇文章主要介紹了解決pycharm導(dǎo)入本地py文件時(shí),模塊下方出現(xiàn)紅色波浪線的問題,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧
    2020-06-06
  • Python 轉(zhuǎn)換時(shí)間戳為指定格式日期

    Python 轉(zhuǎn)換時(shí)間戳為指定格式日期

    這篇文章主要為大家介紹了Python轉(zhuǎn)換時(shí)間戳,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下,希望能夠給你帶來(lái)幫助
    2021-12-12

最新評(píng)論