欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python3實(shí)現(xiàn)常見的排序算法(示例代碼)

 更新時(shí)間:2021年07月04日 15:04:36   作者:忞翛  
排序是非常常見的排序算法,今天給大家分享幾種比較常見的排序算法,本文通過實(shí)例代碼給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價(jià)值,需要的朋友參考下吧

冒泡排序

冒泡排序是一種簡單的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個(gè)元素,如果它們的順序錯(cuò)誤就把它們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個(gè)算法的名字由來是因?yàn)樵叫〉脑貢?jīng)由交換慢慢“浮”到數(shù)列的頂端。

def mao(lst):
    for i in range(len(lst)):
        # 由于每一輪結(jié)束后,總一定有一個(gè)大的數(shù)排在后面
        # 而且后面的數(shù)已經(jīng)排好了
        # 即i輪之后,就有i個(gè)數(shù)字被排好
        # 所以其 len-1 -i到 len-1的位置是已經(jīng)排好的了
        # 只需要比較0到len -1 -i的位置即可

        # flag 用于標(biāo)記是否剛開始就是排好的數(shù)據(jù)
        # 只有當(dāng)flag狀態(tài)發(fā)生改變時(shí)(第一次循環(huán)就可以確定),繼續(xù)排序,否則返回
        flag = False
        for j in range(len(lst) - i - 1):
            if lst[j] > lst[j + 1]:
                lst[j], lst[j + 1] = lst[j + 1], lst[j]
                flag = True
                # 非排好的數(shù)據(jù),改變flag
        if not flag:
            return lst
    return lst

print(mao([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))

選擇排序

選擇排序是一種簡單直觀的排序算法。它的工作原理:首先在未排序序列中找到最?。ù螅┰?,存放到排序序列的起始位置,然后,再從剩余未排序元素中繼續(xù)尋找最小(大)元素,然后放到已排序序列的末尾。以此類推,直到所有元素均排序完畢。

# 選擇排序是從前開始排的
# 選擇排序是從一個(gè)列表中找出一個(gè)最小的元素,然后放在第一位上。
# 冒泡排序類似
# 其 0 到 i的位置是排好的,只需要排i+1到len(lst)-1即可

def select_sort(lst):
    for i in range(len(lst)):
        min_index = i  # 用于記錄最小的元素的索引
        for j in range(i + 1, len(lst)):
            if lst[j] < lst[min_index]:
                min_index = j

        # 此時(shí),已經(jīng)確定,min_index為 i+1 到len(lst) - 1 這個(gè)區(qū)間最小值的索引
        lst[i], lst[min_index] = lst[min_index], lst[i]

    return lst


def select_sort2(lst):
    # 第二種選擇排序的方法
    # 原理與第一種一樣
    # 不過不需要引用中間變量min_index
    # 只需要找到索引i后面的i+1到len(lst)的元素即可

    for i in range(len(lst)):
        for j in range(len(lst) - i):

            # lst[i + j]是一個(gè)i到len(lst)-1的一個(gè)數(shù)
            # 因?yàn)閖 <= len(lst) -i 即 j + i <= len(lst)
            if lst[i] > lst[i + j]:
                # 說明后面的數(shù)更小,更換位置
                lst[i], lst[i + j] = lst[i + j], lst[i]
    return lst


print(select_sort([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))
print(select_sort2([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))

快速排序

快速排序是通過一趟排序?qū)⒋庞涗浄指舫瑟?dú)立的兩部分,其中一部分記錄的關(guān)鍵字均比另一部分的關(guān)鍵字小,則可分別對這兩部分記錄繼續(xù)進(jìn)行排序,以達(dá)到整個(gè)序列有序。

# 原理
# 1. 任取列表中的一個(gè)元素i
# 2. 把列表中大于i的元素放于其右邊,小于則放于其左邊
# 3. 如此重復(fù)
# 4. 直到不能在分,即只剩1個(gè)元素了
# 5. 然后將這些結(jié)果組合起來

def quicksort(lst):
    if len(lst) < 2:    # lst有可能為空
        return lst

    # ['pɪvət] 中心點(diǎn)
    pivot = lst[0]
    less_lst = [i for i in lst[1:] if i <= pivot]
    greater_lst = [i for i in lst[1:] if i > pivot]
    # 最后的結(jié)果就是
    #           左邊的結(jié)果 + 中間值 + 右邊的結(jié)果
    # 然后細(xì)分   左+中+右   + 中間值 + 左 + 中+ 右
    #      ...........    + 中間值 + ............
    return quicksort(less_lst) + [pivot] + quicksort(greater_lst)


print(quicksort([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))
print(quicksort([1, 5, 8, 62]))

插入排序

插入排序的算法描述是一種簡單直觀的排序算法。它的工作原理是通過構(gòu)建有序序列,對于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。

# lst的[0, i) 項(xiàng)是有序的,因?yàn)橐呀?jīng)排過了
# 那么只需要比對第i項(xiàng)的lst[i]和lst[0 : i]的元素大小即可
# 假如,lst[i]大,則不用改變位置
#     否則,lst[i]改變位置,插到j(luò)的位置,而lst[j]自然往后挪一位
#     然后再刪除lst[i+1]即可(lst[i+1]是原來的lst[i])
#
# 重復(fù)上面步驟即可,排序完成

def insert_sort(lst: list):
    # 外層開始的位置從1開始,因?yàn)閺?開始都沒得排
    # 只有兩個(gè)元素以上才能排序
    for i in range(1, len(lst)):
        # 內(nèi)層需要從0開始,因?yàn)閘st[0]的位置不一定是最小的
        for j in range(i):
            if lst[i] < lst[j]:
                lst.insert(j, lst[i])
                # lst[i]已經(jīng)插入到j(luò)的位置了,j之后的元素都往后+1位,所以刪除lst[i+1]
                del lst[i + 1]
    return lst

print(insert_sort([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))

希爾排序

希爾排序是1959年Shell發(fā)明的,第一個(gè)突破O(n2)的排序算法,是簡單插入排序的改進(jìn)版。它與插入排序的不同之處在于,它會優(yōu)先比較距離較遠(yuǎn)的元素。希爾排序又叫縮小增量排序。

希爾排序

# 希爾排序是對直接插入排序的優(yōu)化版本
# 1. 分組:
#       每間隔一段距離取一個(gè)元素為一組
#       間隔自己確定,一般為lst的一半
# 2. 根據(jù)插入排序,把每一組排序好
# 3. 繼續(xù)分組:
#         同樣沒間隔一段距離取一個(gè)元素為一組
#         間隔要求比  之前的間隔少一半
# 4. 再每組插入排序
# 5. 直到間隔為1,則排序完成
#

def shell_sort(lst):
    lst_len = len(lst)
    gap = lst_len // 2  # 整除2,取間隔
    while gap >= 1:  # 間隔為0時(shí)結(jié)束
        for i in range(gap, lst_len):
            temp = lst[i]
            j = i
            # 插入排序
            while j - gap >= 0 and lst[j - gap] > temp:
                lst[j] = lst[j - gap]
                j -= gap
            lst[j] = temp
        gap //= 2
    return lst


print(shell_sort([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))


# 奇數(shù)
#       gap = 2
# [5, 2, 4, 3, 1]
# [5, 4, 1] [2, 3]
# [1, 4, 5, 2, 3]
#       gap = 1
# [1, 2, 3, 4, 5]

# 偶數(shù)
#       gap = 3
# [5, 2, 4, 3, 1, 6]
# [5, 3] [2, 1] [4,6]
# [3, 5, 1, 2, 4 , 6]
#       gap = 1
# [1, 2, 3, 4, 5, 6]

并歸排序

歸并排序是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。將已有序的子序列合并,得到完全有序的序列;即先使每個(gè)子序列有序,再使子序列段間有序。若將兩個(gè)有序表合并成一個(gè)有序表,稱為2-路歸并。

并歸排序

# 利用分治法
# 不斷將lst分為左右兩個(gè)分
# 直到不能再分
# 然后返回
# 將兩邊的列表的元素進(jìn)行比對,排序然后返回
# 不斷重復(fù)上面這一步驟
# 直到排序完成,即兩個(gè)大的列表比對完成


def merge(left, right):
    # left 可能為只有一個(gè)元素的列表,或已經(jīng)排好序的多個(gè)元素列表(之前調(diào)用過merge)
    # right 也一樣

    res = []
    while left and right:
        item = left.pop(0) if left[0] < right[0] else right.pop(0)
        res.append(item)

    # 此時(shí),left或right已經(jīng)有一個(gè)為空,直接extend插入
    # 而且,left和right是之前已經(jīng)排好序的列表,不需要再操作了

    res.extend(left)
    res.extend(right)
    return res


def merge_sort(lst):
    lst_len = len(lst)
    if lst_len <= 1:
        return lst
    mid = lst_len // 2

    lst_right = merge_sort(lst[mid:len(lst)])       # 返回的時(shí)lst_len <= 1時(shí)的 lst 或 merge中進(jìn)行排序后的列表
    lst_left = merge_sort(lst[:mid])                # 返回的是lst_len <= 1時(shí)的 lst 或 merge中進(jìn)行排序后的列表

    return merge(lst_left, lst_right)               # 進(jìn)行排序,lst_left lst_right 的元素會不斷增加


print(merge_sort([1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]))

堆排序

堆排序是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計(jì)的一種排序算法。堆積是一個(gè)近似完全二叉樹的結(jié)構(gòu),并同時(shí)滿足堆積的性質(zhì):即子結(jié)點(diǎn)的鍵值或索引總是小于(或者大于)它的父節(jié)點(diǎn)。然后進(jìn)行排序。

堆排序

# 把列表創(chuàng)成一個(gè)大根堆或小根堆
# 然后根據(jù)大(?。└训奶攸c(diǎn):根節(jié)點(diǎn)最大(小),逐一取值
#
# 升序----使用大頂堆
#
# 降序----使用小頂堆
# 本例以小根堆為例
# 列表lst = [1, 22 ,11, 8, 12, 4, 9]

# 1. 建成一個(gè)普通的堆:
#          1
#        /   \
#       22    11
#      / \    / \
#     8  12  4   9
#
# 2. 進(jìn)行調(diào)整,從子開始調(diào)整位置,要求: 父節(jié)點(diǎn)<= 字節(jié)點(diǎn)
#
#          1                                    1                                    1
#        /   \         13和22調(diào)換位置         /   \          4和11調(diào)換位置          / \
#       22    11       ==============>      13     11       ==============>       13    4
#      / \    / \                          / \    /  \                           / \   /  \
#     13  14 4   9                       22  14  4    9                        22  14 11   9
#
# 3. 取出樹上根節(jié)點(diǎn),即最小值,把換上葉子節(jié)點(diǎn)的最大值
#
#                   1
#                  /
#             ~~~~/
#          22
#         /   \
#        8     4
#         \   /  \
#         12 11   9
#
# 4. 按照同樣的道理,繼續(xù)形成小根堆,然后取出根節(jié)點(diǎn),。。。。重復(fù)這個(gè)過程
#
#          1                    1                 1  4                1 4           1 4 8           1 4 8
#           /                    /                  /                    /             /                 /
#       ~~~/                 ~~~/               ~~~/                 ~~~/          ~~~/              ~~~/
#      22                   4                 22                   8             22                9
#     /   \               /   \              /   \               /   \          /   \             /  \
#    8     4             8     9            8     9             12    9        12    9           12  11
#     \   /  \            \   /  \           \   /               \   /              /                /
#     12 11   9           12 11  22          12 11               22 11            11               22
#
# 續(xù)上:
#       1 4 8 9          1 4 8 9           1 4 8 9 11     1 4 8 9 11    1 4 8 9 11 12   ==>  1 4 8 9 11 12 22
#            /                  /                  /                /              /
#        ~~~/               ~~~/               ~~~/             ~~~/           ~~~/
#       22                 11                22                12            22
#      /   \              /   \             /                  /
#     12    11           12    22          12                22
#
# 代碼實(shí)現(xiàn)

def heapify(lst, lst_len, i):
    """創(chuàng)建一個(gè)堆"""
    less = i  # largest為最大元素的索引

    left_node_index = 2 * i + 1  # 左子節(jié)點(diǎn)索引
    right_node_index = 2 * i + 2  # 右子節(jié)點(diǎn)索引

    # lst[i] 就是父節(jié)點(diǎn)(假如有子節(jié)點(diǎn)的話):
    #
    #                 lst[i]
    #                  /   \
    #      lst[2*i + 1]    lst[ 2*i + 2]
    #

    # 想要大根堆,即升序, 將判斷左右子節(jié)點(diǎn)大小的 ‘>' 改為 ‘<' 即可
    #
    if left_node_index < lst_len and lst[less] > lst[left_node_index]:
        less = left_node_index

    if right_node_index < lst_len and lst[less] > lst[right_node_index]:
        # 右邊節(jié)點(diǎn)最小的時(shí)候
        less = right_node_index

    if less != i:
        # 此時(shí),是字節(jié)點(diǎn)大于父節(jié)點(diǎn),所以相互交換位置
        lst[i], lst[less] = lst[less], lst[i]  # 交換
        heapify(lst, lst_len, less)
        # 節(jié)點(diǎn)變動了,需要再檢查一下

def heap_sort(lst):
    res = []
    i = len(lst)
    lst_len = len(lst)

    for i in range(lst_len, -1, -1):
        # 要從葉節(jié)點(diǎn)開始比較,所以倒著來
        heapify(lst, lst_len, i)

    # 此時(shí),已經(jīng)建好了一個(gè)小根樹
    # 所以,交換元素,將根節(jié)點(diǎn)(最小值)放在后面,重復(fù)這個(gè)過程
    for j in range(lst_len - 1, 0, -1):
        lst[0], lst[j] = lst[j], lst[0]  # 交換,最小的放在j的位置

        heapify(lst, j, 0)      # 再次構(gòu)建一個(gè)[0: j)小根堆 [j: lst_len-1]已經(jīng)倒序排好了
    return lst

arr = [1, 5, 55, 4, 5, 1, 3, 4, 5, 8, 62, 7]
print(heap_sort(arr))

參考:
十大經(jīng)典排序算法(動圖演示)
數(shù)據(jù)結(jié)構(gòu)與算法-排序篇-Python描述

動圖可以點(diǎn)擊這里查看

我的github
我的博客
我的筆記

到此這篇關(guān)于python3實(shí)現(xiàn)常見的排序算法(示例代碼)的文章就介紹到這了,更多相關(guān)python排序算法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • 基于Python實(shí)現(xiàn)牛牛套圈小游戲的示例代碼

    基于Python實(shí)現(xiàn)牛牛套圈小游戲的示例代碼

    “幸運(yùn)牛牛套圈圈”套住歡樂,圈住幸福,等你來挑戰(zhàn)!這篇文章小編主要為大家介紹一款基于Python實(shí)現(xiàn)牛牛套圈小游戲,感興趣的小伙伴可以了解一下
    2023-02-02
  • 使用Python實(shí)現(xiàn)二分法查找的示例

    使用Python實(shí)現(xiàn)二分法查找的示例

    這篇文章主要介紹了使用Python實(shí)現(xiàn)二分法查找的示例,二分法通常又叫二分查找,一般用于查找一個(gè)有序數(shù)組中的某個(gè)值的位置或者給定的特定值的插入位置,需要的朋友可以參考下
    2023-04-04
  • python作圖基礎(chǔ)之plt.contour實(shí)例詳解

    python作圖基礎(chǔ)之plt.contour實(shí)例詳解

    contour和contourf都是畫三維等高線圖的,下面這篇文章主要給大家介紹了關(guān)于python作圖基礎(chǔ)操作之plt.contour的相關(guān)資料,文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-06-06
  • Python中GIL的使用詳解

    Python中GIL的使用詳解

    GIL的全稱為Global Interpreter Lock,全局解釋器鎖。本篇文章詳細(xì)的介紹了Python中GIL的使用,有需要了解Python中GIL用法的朋友可參考。希望此文章對各位有所幫助
    2018-10-10
  • 在Python中利用Into包整潔地進(jìn)行數(shù)據(jù)遷移的教程

    在Python中利用Into包整潔地進(jìn)行數(shù)據(jù)遷移的教程

    這篇文章主要介紹了在Python中如何利用Into包整潔地進(jìn)行數(shù)據(jù)遷移,在數(shù)據(jù)格式的任意兩個(gè)格式之間高效地遷移數(shù)據(jù),需要的朋友可以參考下
    2015-03-03
  • 深入理解Python中range和xrange的區(qū)別

    深入理解Python中range和xrange的區(qū)別

    這篇文章主要介紹了深入理解Python中range和xrange的區(qū)別,從用法和輸出等方便詳細(xì)介紹了之間的差別。
    2017-11-11
  • python實(shí)現(xiàn)進(jìn)制轉(zhuǎn)化的示例代碼

    python實(shí)現(xiàn)進(jìn)制轉(zhuǎn)化的示例代碼

    本文主要介紹了python實(shí)現(xiàn)進(jìn)制轉(zhuǎn)化的示例代碼,文中通過示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下
    2021-10-10
  • python獲取指定時(shí)間差的時(shí)間實(shí)例詳解

    python獲取指定時(shí)間差的時(shí)間實(shí)例詳解

    這篇文章主要介紹了python獲取指定時(shí)間差的時(shí)間實(shí)例詳解的相關(guān)資料,需要的朋友可以參考下
    2017-04-04
  • PyTorch中torch.tensor與torch.Tensor的區(qū)別詳解

    PyTorch中torch.tensor與torch.Tensor的區(qū)別詳解

    這篇文章主要介紹了PyTorch中torch.tensor與torch.Tensor的區(qū)別詳解,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧
    2020-05-05
  • python中3種等待元素出現(xiàn)的方法總結(jié)

    python中3種等待元素出現(xiàn)的方法總結(jié)

    發(fā)現(xiàn)太多人不會用等待了,小編今天實(shí)在是忍不住要給大家講講等待的必要性,下面這篇文章主要給大家介紹了關(guān)于python中3種等待元素出現(xiàn)的方法,需要的朋友可以參考下
    2022-03-03

最新評論