手把手教你使用TensorFlow2實(shí)現(xiàn)RNN
概述
RNN (Recurrent Netural Network) 是用于處理序列數(shù)據(jù)的神經(jīng)網(wǎng)絡(luò). 所謂序列數(shù)據(jù), 即前面的輸入和后面的輸入有一定的聯(lián)系.
權(quán)重共享
傳統(tǒng)神經(jīng)網(wǎng)絡(luò):
RNN:
RNN 的權(quán)重共享和 CNN 的權(quán)重共享類似, 不同時刻共享一個權(quán)重, 大大減少了參數(shù)數(shù)量.
計算過程:
計算狀態(tài) (State)
計算輸出:
案例
數(shù)據(jù)集
IBIM 數(shù)據(jù)集包含了來自互聯(lián)網(wǎng)的 50000 條關(guān)于電影的評論, 分為正面評價和負(fù)面評價.
RNN 層
class RNN(tf.keras.Model): def __init__(self, units): super(RNN, self).__init__() # 初始化 [b, 64] (b 表示 batch_size) self.state0 = [tf.zeros([batch_size, units])] self.state1 = [tf.zeros([batch_size, units])] # [b, 80] => [b, 80, 100] self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len) self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2) self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2) # [b, 80, 100] => [b, 64] => [b, 1] self.out_layer = tf.keras.layers.Dense(1) def call(self, inputs, training=None): """ :param inputs: [b, 80] :param training: :return: """ state0 = self.state0 state1 = self.state1 x = self.embedding(inputs) for word in tf.unstack(x, axis=1): out0, state0 = self.rnn_cell0(word, state0, training=training) out1, state1 = self.rnn_cell1(out0, state1, training=training) # [b, 64] -> [b, 1] x = self.out_layer(out1) prob = tf.sigmoid(x) return prob
獲取數(shù)據(jù)
def get_data(): # 獲取數(shù)據(jù) (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words) # 更改句子長度 X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len) X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len) # 調(diào)試輸出 print(X_train.shape, y_train.shape) # (25000, 80) (25000,) print(X_test.shape, y_test.shape) # (25000, 80) (25000,) # 分割訓(xùn)練集 train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)) train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True) # 分割測試集 test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)) test_db = test_db.batch(batch_size, drop_remainder=True) return train_db, test_db
完整代碼
import tensorflow as tf class RNN(tf.keras.Model): def __init__(self, units): super(RNN, self).__init__() # 初始化 [b, 64] self.state0 = [tf.zeros([batch_size, units])] self.state1 = [tf.zeros([batch_size, units])] # [b, 80] => [b, 80, 100] self.embedding = tf.keras.layers.Embedding(total_words, embedding_len, input_length=max_review_len) self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2) self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units=units, dropout=0.2) # [b, 80, 100] => [b, 64] => [b, 1] self.out_layer = tf.keras.layers.Dense(1) def call(self, inputs, training=None): """ :param inputs: [b, 80] :param training: :return: """ state0 = self.state0 state1 = self.state1 x = self.embedding(inputs) for word in tf.unstack(x, axis=1): out0, state0 = self.rnn_cell0(word, state0, training=training) out1, state1 = self.rnn_cell1(out0, state1, training=training) # [b, 64] -> [b, 1] x = self.out_layer(out1) prob = tf.sigmoid(x) return prob # 超參數(shù) total_words = 10000 # 文字?jǐn)?shù)量 max_review_len = 80 # 句子長度 embedding_len = 100 # 詞維度 batch_size = 1024 # 一次訓(xùn)練的樣本數(shù)目 learning_rate = 0.0001 # 學(xué)習(xí)率 iteration_num = 20 # 迭代次數(shù) optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate) # 優(yōu)化器 loss = tf.losses.BinaryCrossentropy(from_logits=True) # 損失 model = RNN(64) # 調(diào)試輸出summary model.build(input_shape=[None, 64]) print(model.summary()) # 組合 model.compile(optimizer=optimizer, loss=loss, metrics=["accuracy"]) def get_data(): # 獲取數(shù)據(jù) (X_train, y_train), (X_test, y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words) # 更改句子長度 X_train = tf.keras.preprocessing.sequence.pad_sequences(X_train, maxlen=max_review_len) X_test = tf.keras.preprocessing.sequence.pad_sequences(X_test, maxlen=max_review_len) # 調(diào)試輸出 print(X_train.shape, y_train.shape) # (25000, 80) (25000,) print(X_test.shape, y_test.shape) # (25000, 80) (25000,) # 分割訓(xùn)練集 train_db = tf.data.Dataset.from_tensor_slices((X_train, y_train)) train_db = train_db.shuffle(10000).batch(batch_size, drop_remainder=True) # 分割測試集 test_db = tf.data.Dataset.from_tensor_slices((X_test, y_test)) test_db = test_db.batch(batch_size, drop_remainder=True) return train_db, test_db if __name__ == "__main__": # 獲取分割的數(shù)據(jù)集 train_db, test_db = get_data() # 擬合 model.fit(train_db, epochs=iteration_num, validation_data=test_db, validation_freq=1)
輸出結(jié)果:
Model: "rnn"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
embedding (Embedding) multiple 1000000
_________________________________________________________________
simple_rnn_cell (SimpleRNNCe multiple 10560
_________________________________________________________________
simple_rnn_cell_1 (SimpleRNN multiple 8256
_________________________________________________________________
dense (Dense) multiple 65
=================================================================
Total params: 1,018,881
Trainable params: 1,018,881
Non-trainable params: 0
_________________________________________________________________
None(25000, 80) (25000,)
(25000, 80) (25000,)
Epoch 1/20
2021-07-10 17:59:45.150639: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:176] None of the MLIR Optimization Passes are enabled (registered 2)
24/24 [==============================] - 12s 294ms/step - loss: 0.7113 - accuracy: 0.5033 - val_loss: 0.6968 - val_accuracy: 0.4994
Epoch 2/20
24/24 [==============================] - 7s 292ms/step - loss: 0.6951 - accuracy: 0.5005 - val_loss: 0.6939 - val_accuracy: 0.4994
Epoch 3/20
24/24 [==============================] - 7s 297ms/step - loss: 0.6937 - accuracy: 0.5000 - val_loss: 0.6935 - val_accuracy: 0.4994
Epoch 4/20
24/24 [==============================] - 8s 316ms/step - loss: 0.6934 - accuracy: 0.5001 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 5/20
24/24 [==============================] - 7s 301ms/step - loss: 0.6934 - accuracy: 0.4996 - val_loss: 0.6933 - val_accuracy: 0.4994
Epoch 6/20
24/24 [==============================] - 8s 334ms/step - loss: 0.6932 - accuracy: 0.5000 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 7/20
24/24 [==============================] - 10s 398ms/step - loss: 0.6931 - accuracy: 0.5006 - val_loss: 0.6932 - val_accuracy: 0.4994
Epoch 8/20
24/24 [==============================] - 9s 382ms/step - loss: 0.6930 - accuracy: 0.5006 - val_loss: 0.6931 - val_accuracy: 0.4994
Epoch 9/20
24/24 [==============================] - 8s 322ms/step - loss: 0.6924 - accuracy: 0.4995 - val_loss: 0.6913 - val_accuracy: 0.5240
Epoch 10/20
24/24 [==============================] - 8s 321ms/step - loss: 0.6812 - accuracy: 0.5501 - val_loss: 0.6655 - val_accuracy: 0.5767
Epoch 11/20
24/24 [==============================] - 8s 318ms/step - loss: 0.6381 - accuracy: 0.6896 - val_loss: 0.6235 - val_accuracy: 0.7399
Epoch 12/20
24/24 [==============================] - 8s 323ms/step - loss: 0.6088 - accuracy: 0.7655 - val_loss: 0.6110 - val_accuracy: 0.7533
Epoch 13/20
24/24 [==============================] - 8s 321ms/step - loss: 0.5949 - accuracy: 0.7956 - val_loss: 0.6111 - val_accuracy: 0.7878
Epoch 14/20
24/24 [==============================] - 8s 324ms/step - loss: 0.5859 - accuracy: 0.8142 - val_loss: 0.5993 - val_accuracy: 0.7904
Epoch 15/20
24/24 [==============================] - 8s 330ms/step - loss: 0.5791 - accuracy: 0.8318 - val_loss: 0.5961 - val_accuracy: 0.7907
Epoch 16/20
24/24 [==============================] - 8s 340ms/step - loss: 0.5739 - accuracy: 0.8421 - val_loss: 0.5942 - val_accuracy: 0.7961
Epoch 17/20
24/24 [==============================] - 9s 378ms/step - loss: 0.5701 - accuracy: 0.8497 - val_loss: 0.5933 - val_accuracy: 0.8014
Epoch 18/20
24/24 [==============================] - 9s 361ms/step - loss: 0.5665 - accuracy: 0.8589 - val_loss: 0.5958 - val_accuracy: 0.8082
Epoch 19/20
24/24 [==============================] - 8s 353ms/step - loss: 0.5630 - accuracy: 0.8681 - val_loss: 0.5931 - val_accuracy: 0.7966
Epoch 20/20
24/24 [==============================] - 8s 314ms/step - loss: 0.5614 - accuracy: 0.8702 - val_loss: 0.5925 - val_accuracy: 0.7959Process finished with exit code 0
到此這篇關(guān)于手把手教你使用TensorFlow2實(shí)現(xiàn)RNN的文章就介紹到這了,更多相關(guān)TensorFlow2實(shí)現(xiàn)RNN內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
django創(chuàng)建超級用戶時指定添加其它字段方式
這篇文章主要介紹了django創(chuàng)建超級用戶時指定添加其它字段方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05Python_查看sqlite3表結(jié)構(gòu),查詢語句的示例代碼
今天小編就為大家分享一篇Python_查看sqlite3表結(jié)構(gòu),查詢語句的示例代碼,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-07-07使用Keras預(yù)訓(xùn)練模型ResNet50進(jìn)行圖像分類方式
這篇文章主要介紹了使用Keras預(yù)訓(xùn)練模型ResNet50進(jìn)行圖像分類方式,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-05-05python3實(shí)現(xiàn)往mysql中插入datetime類型的數(shù)據(jù)
這篇文章主要介紹了python3實(shí)現(xiàn)往mysql中插入datetime類型的數(shù)據(jù),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-03-03在?Python?中創(chuàng)建DataFrame的方法
這篇文章主要介紹了教你如何在?Python?中創(chuàng)建DataFrame,我們將學(xué)習(xí)以多種方式創(chuàng)建DataFrame,DataFrame是數(shù)據(jù)的二維集合,是一種數(shù)據(jù)結(jié)構(gòu),其中數(shù)據(jù)以表格形式存儲,更多相關(guān)資料需要的小伙伴可以參考一下2022-03-03關(guān)于python簡單的爬蟲操作(requests和etree)
這篇文章主要介紹了關(guān)于python簡單的爬蟲操作(requests和etree),文中提供了實(shí)現(xiàn)代碼,需要的朋友可以參考下2023-04-04