Anaconda配置各版本Pytorch的實現(xiàn)
1. 前言
利用 Anaconda 配置 Pytorch 深度學習環(huán)境時利用官網(wǎng)鏈接給出的安裝指令安裝會很慢,而且經(jīng)常報錯,為此整理目前全版本 pytorch 深度學習環(huán)境配置指令,以下指令適用 Windows 操作系統(tǒng),在 Anaconda Prompt 中運行。
2. 配置鏡像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/ conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/ conda config --set show_channel_urls yes
3. pytorch,torchvision,python 版本對應
pytorch,torchvision,python 三者的對應關系來源于 pytorch 官方 github,鏈接:https://github.com/pytorch/vision#installation
4. 創(chuàng)建并進入虛擬環(huán)境
創(chuàng)建一個虛擬環(huán)境,其中 pt 是自定義虛擬環(huán)境名稱,另外根據(jù)踩坑經(jīng)驗 python 3.6.5 版本可以適配所有版本的 pytorch,建議創(chuàng)建環(huán)境時 python 解釋器版本選擇 3.6.5 版本。
conda create -n pt python=3.6.5
隨后點擊 y 同意安裝,等待一會進入虛擬環(huán)境。
activate pt
5. Pytorch 0.4.1
conda install pytorch==0.4.1 torchvision==0.2.1 cuda90 # CUDA 9.0 conda install pytorch==0.4.1 torchvision==0.2.1 cuda92 # CUDA 9.2 conda install pytorch==0.4.1 torchvision==0.2.1 cuda80 # CUDA 8.0 conda install pytorch==0.4.1 torchvision==0.2.1 cuda75 # CUDA 7.5 conda install pytorch==0.4.1 torchvision==0.2.1 cpuonly # CPU 版本
6. Pytorch 1.0.0
conda install pytorch==1.0.0 torchvision==0.2.1 cuda100 # CUDA 10.0 conda install pytorch==1.0.0 torchvision==0.2.1 cuda90 # CUDA 9.0 conda install pytorch==1.0.0 torchvision==0.2.1 cuda80 # CUDA 8.0 conda install pytorch-cpu==1.0.0 torchvision-cpu==0.2.1 cpuonly # CPU 版本
7. Pytorch 1.0.1
conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=9.0 # CUDA 9.0 conda install pytorch==1.0.1 torchvision==0.2.2 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch-cpu==1.0.1 torchvision-cpu==0.2.2 cpuonly # CPU 版本
8. Pytorch 1.1.0
conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=9.0 # CUDA 9.0 conda install pytorch==1.1.0 torchvision==0.3.0 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch-cpu==1.1.0 torchvision-cpu==0.3.0 cpuonly # CPU O版本
9. Pytorch 1.2.0
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 # CUDA 10.0 conda install pytorch==1.2.0 torchvision==0.4.0 cpuonly # CPU 版本
10. Pytorch 1.4.0
conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.4.0 torchvision==0.5.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.4.0 torchvision==0.5.0 cpuonly # CPU 版本
11. Pytorch 1.5.0
conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.5.0 torchvision==0.6.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.5.0 torchvision==0.6.0 cpuonly # CPU 版本
12. Pytorch 1.5.1
conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.5.1 torchvision==0.6.1 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.5.1 torchvision==0.6.1 cpuonly # CPU 版本
13. Pytorch 1.6.0
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.6.0 torchvision==0.7.0 cpuonly # CPU 版本
14. Pytorch 1.7.0
conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.7.0 torchvision==0.8.0 cudatoolkit=11.0 # CUDA 11.0 conda install pytorch==1.7.0 torchvision==0.8.0 cpuonly # CPU 版本
15. Pytorch 1.7.1
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=9.2 # CUDA 9.2 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.1 # CUDA 10.1 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=11.0 # CUDA 11.0 conda install pytorch==1.7.1 torchvision==0.8.2 cpuonly # CPU 版本
16. Pytorch 1.8.0
conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.8.0 torchvision==0.9.0 cudatoolkit=11.1 # CUDA 11.1 conda install pytorch==1.8.0 torchvision==0.9.0 cpuonly # CPU 版本
17. Pytorch 1.9.0
conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=10.2 # CUDA 10.2 conda install pytorch==1.9.0 torchvision==0.10.0 cudatoolkit=11.1 # CUDA 11.1 conda install pytorch==1.9.0 torchvision==0.10.0 cpuonly # CPU 版本
18. 測試是否安裝成功
- CPU 版本測試:繼續(xù)運行 python 進入交互式環(huán)境,分別運行
import torch
,import torchvision
不報錯則安裝成功。 - GPU 版本測試:繼續(xù)運行 python 進入交互式環(huán)境,分別運行
import torch
,import torchvision
不報錯, 再運行print(torch.cuda.is_available())
輸出 Ture 則表示安裝成功。
到此這篇關于Anaconda配置各版本Pytorch的實現(xiàn)的文章就介紹到這了,更多相關Anaconda配置Pytorch內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
- Anaconda多環(huán)境多版本python配置操作方法
- anaconda中更改python版本的方法步驟
- 淺談anaconda python 版本對應關系
- anaconda升級sklearn版本的實現(xiàn)方法
- WIndows10系統(tǒng)下面安裝Anaconda、Pycharm及Pytorch環(huán)境全過程(NVIDIA?GPU版本)
- Python和Anaconda的版本對應關系
- Anaconda安裝時默認python版本改成其他版本的兩種方式
- 使用Anaconda創(chuàng)建Python指定版本的虛擬環(huán)境的教程詳解
- conda下載各種包時如何避免版本不匹配問題
相關文章
解決PyCharm IDE環(huán)境下,執(zhí)行unittest不生成測試報告的問題
這篇文章主要介紹了解決PyCharm IDE環(huán)境下,執(zhí)行unittest不生成測試報告的問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-09-09python一行sql太長折成多行并且有多個參數(shù)的方法
今天小編就為大家分享一篇python一行sql太長折成多行并且有多個參數(shù)的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-07-07詳解如何用django實現(xiàn)redirect的幾種方法總結
這篇文章主要介紹了如何用django實現(xiàn)redirect的幾種方法總結,詳細的介紹3種實現(xiàn)方式,對大家的學習或者工作具有一定的參考學習價值,需要的朋友們下面隨著小編來一起學習學習吧2018-11-11wxpython 最小化到托盤與歡迎圖片的實現(xiàn)方法
這篇文章主要分享一個python實例代碼,使用wxpython實現(xiàn)最小化到托盤與歡迎圖片,需要的朋友可以參考下2014-06-06