python簡單實(shí)現(xiàn)圖片文字分割
本文實(shí)例為大家分享了python簡單實(shí)現(xiàn)圖片文字分割的具體代碼,供大家參考,具體內(nèi)容如下
原圖:
圖片預(yù)處理:圖片二值化以及圖片降噪處理。
# 圖片二值化 def binarization(img,threshold): #圖片二值化操作 width,height=img.size im_new = img.copy() for i in range(width): for j in range(height): a = img.getpixel((i, j)) aa = 0.30 * a[0] + 0.59 * a[1] + 0.11 * a[2] if (aa <= threshold): im_new.putpixel((i, j), (0, 0, 0)) else: im_new.putpixel((i, j), (255, 255, 255)) # im_new.show() # 顯示圖像 return im_new
# 圖片降噪處理 def clear_noise(img): # 圖片降噪處理 x, y = img.width, img.height for i in range(x-1): for j in range(y-1): if sum_9_region(img, i, j) < 600: # 改變像素點(diǎn)顏色,白色 img.putpixel((i, j), (255,255,255)) # img = np.array(img) # # cv2.imwrite('handle_two.png', img) # # img = Image.open('handle_two.png') img.show() return img # 獲取田字格內(nèi)當(dāng)前像素點(diǎn)的像素值 def sum_9_region(img, x, y): """ 田字格 """ # 獲取當(dāng)前像素點(diǎn)的像素值 a1 = img.getpixel((x - 1, y - 1))[0] a2 = img.getpixel((x - 1, y))[0] a3 = img.getpixel((x - 1, y+1 ))[0] a4 = img.getpixel((x, y - 1))[0] a5 = img.getpixel((x, y))[0] a6 = img.getpixel((x, y+1 ))[0] a7 = img.getpixel((x+1 , y - 1))[0] a8 = img.getpixel((x+1 , y))[0] a9 = img.getpixel((x+1 , y+1))[0] width = img.width height = img.height if a5 == 255: # 如果當(dāng)前點(diǎn)為白色區(qū)域,則不統(tǒng)計(jì)鄰域值 return 2550 if y == 0: # 第一行 if x == 0: # 左上頂點(diǎn),4鄰域 # 中心點(diǎn)旁邊3個(gè)點(diǎn) sum_1 = a5 + a6 + a8 + a9 return 4*255 - sum_1 elif x == width - 1: # 右上頂點(diǎn) sum_2 = a5 + a6 + a2 + a3 return 4*255 - sum_2 else: # 最上非頂點(diǎn),6鄰域 sum_3 = a2 + a3+ a5 + a6 + a8 + a9 return 6*255 - sum_3 elif y == height - 1: # 最下面一行 if x == 0: # 左下頂點(diǎn) # 中心點(diǎn)旁邊3個(gè)點(diǎn) sum_4 = a5 + a8 + a7 + a4 return 4*255 - sum_4 elif x == width - 1: # 右下頂點(diǎn) sum_5 = a5 + a4 + a2 + a1 return 4*255 - sum_5 else: # 最下非頂點(diǎn),6鄰域 sum_6 = a5+ a2 + a8 + a4 +a1 + a7 return 6*255 - sum_6 else: # y不在邊界 if x == 0: # 左邊非頂點(diǎn) sum_7 = a4 + a5 + a6 + a7 + a8 + a9 return 6*255 - sum_7 elif x == width - 1: # 右邊非頂點(diǎn) sum_8 = a4 + a5 + a6 + a1 + a2 + a3 return 6*255 - sum_8 else: # 具備9領(lǐng)域條件的 sum_9 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 return 9*255 - sum_9
經(jīng)過二值化和降噪后得到的圖片
對(duì)圖片進(jìn)行水平投影與垂直投影:
# 傳入二值化后的圖片進(jìn)行垂直投影 def vertical(img): """傳入二值化后的圖片進(jìn)行垂直投影""" pixdata = img.load() w,h = img.size ver_list = [] # 開始投影 for x in range(w): black = 0 for y in range(h): if pixdata[x,y][0] == 0: black += 1 ver_list.append(black) # 判斷邊界 l,r = 0,0 flag = False t=0#判斷分割數(shù)量 cuts = [] for i,count in enumerate(ver_list): # 閾值這里為0 if flag is False and count > 0: l = i flag = True if flag and count == 0: r = i-1 flag = False cuts.append((l,r))#記錄邊界點(diǎn) t += 1 #print(t) return cuts,t # 傳入二值化后的圖片進(jìn)行水平投影 def horizontal(img): """傳入二值化后的圖片進(jìn)行水平投影""" pixdata = img.load() w,h = img.size ver_list = [] # 開始投影 for y in range(h): black = 0 for x in range(w): if pixdata[x,y][0] == 0: black += 1 ver_list.append(black) # 判斷邊界 l,r = 0,0 flag = False # 分割區(qū)域數(shù) t=0 cuts = [] for i,count in enumerate(ver_list): # 閾值這里為0 if flag is False and count > 0: l = i flag = True if flag and count == 0: r = i-1 flag = False cuts.append((l,r)) t += 1 return cuts,t
這兩段代碼目的主要是為了分割得到水平和垂直位置的每個(gè)字所占的大小,接下來就是對(duì)預(yù)處理好的圖片文字進(jìn)行分割。
# 創(chuàng)建獲得圖片路徑并處理圖片函數(shù) def get_im_path(): OpenFile = tk.Tk()#創(chuàng)建新窗口 OpenFile.withdraw() file_path = filedialog.askopenfilename() im = Image.open(file_path) # 閾值 th = getthreshold(im) - 16 print(th) # 原圖直接二值化 im_new1 = binarization(im, th) im_new1.show() # 直方圖均衡化 im1 = his_bal(im) im1.show() im_new_np = np.array(his_bal(im)) th1 = getthreshold(im1) - 16 print(th1) # 二值化 im_new = binarization(im1, th1) # 降噪 im_new_cn = clear_noise(im_new) height = im_new_cn.size[1] print(height) # 算出水平投影和垂直投影的數(shù)值 v, vt = vertical(im_new1) h, ht = horizontal(im_new1) # 算出分割區(qū)域 a = [] for i in range(vt): a.append((v[i][0], 0, v[i][1], height)) print(a) im_new.show() # 直方圖均衡化后再二值化 # 切割 for i, n in enumerate(a, 1): temp = im_new_cn.crop(n) # 調(diào)用crop函數(shù)進(jìn)行切割 temp.show() temp.save("c/%s.png" % i)
至此大概就完成了。
接下來是文件的全部代碼:
import numpy as np from PIL import Image import queue import matplotlib.pyplot as plt import tkinter as tk from tkinter import filedialog#導(dǎo)入文件對(duì)話框函數(shù)庫 window = tk.Tk() window.title('圖片選擇界面') window.geometry('400x100') var = tk.StringVar() # 創(chuàng)建獲得圖片路徑并處理圖片函數(shù) def get_im_path(): OpenFile = tk.Tk()#創(chuàng)建新窗口 OpenFile.withdraw() file_path = filedialog.askopenfilename() im = Image.open(file_path) # 閾值 th = getthreshold(im) - 16 print(th) # 原圖直接二值化 im_new1 = binarization(im, th) im_new1.show() # 直方圖均衡化 im1 = his_bal(im) im1.show() im_new_np = np.array(his_bal(im)) th1 = getthreshold(im1) - 16 print(th1) # 二值化 im_new = binarization(im1, th1) # 降噪 im_new_cn = clear_noise(im_new) height = im_new_cn.size[1] print(height) # 算出水平投影和垂直投影的數(shù)值 v, vt = vertical(im_new1) h, ht = horizontal(im_new1) # 算出分割區(qū)域 a = [] for i in range(vt): a.append((v[i][0], 0, v[i][1], height)) print(a) im_new.show() # 直方圖均衡化后再二值化 # 切割 for i, n in enumerate(a, 1): temp = im_new_cn.crop(n) # 調(diào)用crop函數(shù)進(jìn)行切割 temp.show() temp.save("c/%s.png" % i) # 傳入二值化后的圖片進(jìn)行垂直投影 def vertical(img): """傳入二值化后的圖片進(jìn)行垂直投影""" pixdata = img.load() w,h = img.size ver_list = [] # 開始投影 for x in range(w): black = 0 for y in range(h): if pixdata[x,y][0] == 0: black += 1 ver_list.append(black) # 判斷邊界 l,r = 0,0 flag = False t=0#判斷分割數(shù)量 cuts = [] for i,count in enumerate(ver_list): # 閾值這里為0 if flag is False and count > 0: l = i flag = True if flag and count == 0: r = i-1 flag = False cuts.append((l,r))#記錄邊界點(diǎn) t += 1 #print(t) return cuts,t # 傳入二值化后的圖片進(jìn)行水平投影 def horizontal(img): """傳入二值化后的圖片進(jìn)行水平投影""" pixdata = img.load() w,h = img.size ver_list = [] # 開始投影 for y in range(h): black = 0 for x in range(w): if pixdata[x,y][0] == 0: black += 1 ver_list.append(black) # 判斷邊界 l,r = 0,0 flag = False # 分割區(qū)域數(shù) t=0 cuts = [] for i,count in enumerate(ver_list): # 閾值這里為0 if flag is False and count > 0: l = i flag = True if flag and count == 0: r = i-1 flag = False cuts.append((l,r)) t += 1 return cuts,t # 獲得閾值算出平均像素 def getthreshold(im): #獲得閾值 算出平均像素 wid, hei = im.size hist = [0] * 256 th = 0 for i in range(wid): for j in range(hei): gray = int(0.3 * im.getpixel((i, j))[0] + 0.59 * im.getpixel((i, j))[1] + 0.11 * im.getpixel((i, j))[2]) th = gray + th hist[gray] += 1 threshold = int(th/(wid*hei)) return threshold # 直方圖均衡化 提高對(duì)比度 def his_bal(im): #直方圖均衡化 提高對(duì)比度 # 統(tǒng)計(jì)灰度直方圖 im_new = im.copy() wid, hei = im.size hist = [0] * 256 for i in range(wid): for j in range(hei): gray = int(0.3*im.getpixel((i,j))[0]+0.59*im.getpixel((i,j))[1]+0.11*im.getpixel((i,j))[2]) hist[gray] += 1 # 計(jì)算累積分布函數(shù) cdf = [0] * 256 for i in range(256): if i == 0: cdf[i] = hist[i] else: cdf[i] = cdf[i - 1] + hist[i] # 用累積分布函數(shù)計(jì)算輸出灰度映射函數(shù)LUT new_gray = [0] * 256 for i in range(256): new_gray[i] = int(cdf[i] / (wid * hei) * 255 + 0.5) # 遍歷原圖像,通過LUT逐點(diǎn)計(jì)算新圖像對(duì)應(yīng)的像素值 for i in range(wid): for j in range(hei): gray = int(0.3*im.getpixel((i,j))[0]+0.59*im.getpixel((i,j))[1]+0.11*im.getpixel((i,j))[2]) im_new.putpixel((i, j), new_gray[gray]) return im_new # 圖片二值化 def binarization(img,threshold): #圖片二值化操作 width,height=img.size im_new = img.copy() for i in range(width): for j in range(height): a = img.getpixel((i, j)) aa = 0.30 * a[0] + 0.59 * a[1] + 0.11 * a[2] if (aa <= threshold): im_new.putpixel((i, j), (0, 0, 0)) else: im_new.putpixel((i, j), (255, 255, 255)) # im_new.show() # 顯示圖像 return im_new # 圖片降噪處理 def clear_noise(img): # 圖片降噪處理 x, y = img.width, img.height for i in range(x-1): for j in range(y-1): if sum_9_region(img, i, j) < 600: # 改變像素點(diǎn)顏色,白色 img.putpixel((i, j), (255,255,255)) # img = np.array(img) # # cv2.imwrite('handle_two.png', img) # # img = Image.open('handle_two.png') img.show() return img # 獲取田字格內(nèi)當(dāng)前像素點(diǎn)的像素值 def sum_9_region(img, x, y): """ 田字格 """ # 獲取當(dāng)前像素點(diǎn)的像素值 a1 = img.getpixel((x - 1, y - 1))[0] a2 = img.getpixel((x - 1, y))[0] a3 = img.getpixel((x - 1, y+1 ))[0] a4 = img.getpixel((x, y - 1))[0] a5 = img.getpixel((x, y))[0] a6 = img.getpixel((x, y+1 ))[0] a7 = img.getpixel((x+1 , y - 1))[0] a8 = img.getpixel((x+1 , y))[0] a9 = img.getpixel((x+1 , y+1))[0] width = img.width height = img.height if a5 == 255: # 如果當(dāng)前點(diǎn)為白色區(qū)域,則不統(tǒng)計(jì)鄰域值 return 2550 if y == 0: # 第一行 if x == 0: # 左上頂點(diǎn),4鄰域 # 中心點(diǎn)旁邊3個(gè)點(diǎn) sum_1 = a5 + a6 + a8 + a9 return 4*255 - sum_1 elif x == width - 1: # 右上頂點(diǎn) sum_2 = a5 + a6 + a2 + a3 return 4*255 - sum_2 else: # 最上非頂點(diǎn),6鄰域 sum_3 = a2 + a3+ a5 + a6 + a8 + a9 return 6*255 - sum_3 elif y == height - 1: # 最下面一行 if x == 0: # 左下頂點(diǎn) # 中心點(diǎn)旁邊3個(gè)點(diǎn) sum_4 = a5 + a8 + a7 + a4 return 4*255 - sum_4 elif x == width - 1: # 右下頂點(diǎn) sum_5 = a5 + a4 + a2 + a1 return 4*255 - sum_5 else: # 最下非頂點(diǎn),6鄰域 sum_6 = a5+ a2 + a8 + a4 +a1 + a7 return 6*255 - sum_6 else: # y不在邊界 if x == 0: # 左邊非頂點(diǎn) sum_7 = a4 + a5 + a6 + a7 + a8 + a9 return 6*255 - sum_7 elif x == width - 1: # 右邊非頂點(diǎn) sum_8 = a4 + a5 + a6 + a1 + a2 + a3 return 6*255 - sum_8 else: # 具備9領(lǐng)域條件的 sum_9 = a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8 + a9 return 9*255 - sum_9 btn_Open = tk.Button(window, text='打開圖像', # 顯示在按鈕上的文字 width=15, height=2, command=get_im_path) # 點(diǎn)擊按鈕式執(zhí)行的命令 btn_Open.pack() # 運(yùn)行整體窗口 window.mainloop()
以上就是本文的全部內(nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。
相關(guān)文章
python學(xué)習(xí)與數(shù)據(jù)挖掘應(yīng)知應(yīng)會(huì)的十大終端命令
今天我們將介紹一些基本的數(shù)據(jù)收集、探索和聚合—所有這些都是通過shell完成的。如果你使用的是Linux或Mac,那么接下來就不會(huì)有任何問題,但是Windows用戶應(yīng)該在繼續(xù)之前下載一個(gè)終端仿真器2021-11-11python命令行參數(shù)解析OptionParser類用法實(shí)例
這篇文章主要介紹了python命令行參數(shù)解析OptionParser類用法實(shí)例,需要的朋友可以參考下2014-10-10Python時(shí)間和日期庫的實(shí)現(xiàn)
這篇文章主要介紹了Python時(shí)間和日期庫的實(shí)現(xiàn),文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2021-03-03Linux下用Python腳本監(jiān)控目錄變化代碼分享
這篇文章主要介紹了Linux下用Python腳本監(jiān)控目錄變化代碼分享,本文直接給出實(shí)現(xiàn)代碼,需要的朋友可以參考下2015-05-05Python實(shí)現(xiàn)簡易版的Web服務(wù)器(推薦)
這篇文章主要介紹了Python實(shí)現(xiàn)簡易Web服務(wù)器的相關(guān)資料,非常不錯(cuò),具有參考借鑒價(jià)值,需要的朋友可以參考下2018-01-01解決Python出現(xiàn)_warn_unsafe_extraction問題的方法
這篇文章主要為大家詳細(xì)介紹了解決Python出現(xiàn)'_warn_unsafe_extraction'問題的方法,感興趣的小伙伴們可以參考一下2016-03-03