欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Pytorch教程內(nèi)置模型源碼實(shí)現(xiàn)

 更新時(shí)間:2021年09月07日 12:03:14   作者:xz1308579340  
本文是關(guān)于Pytorch教程文章,本篇主要為教大家Pytorch內(nèi)置模型源碼實(shí)現(xiàn),有需要的朋友可以借鑒參考下,希望可以有所幫助,祝大家多多進(jìn)步,早日升職加薪

翻譯自
https://pytorch.org/docs/stable/torchvision/models.html
主要講解了torchvision.models的使用

torchvision.models

torchvision.models中包含了如下模型

  • AlexNet
  • VGG
  • ResNet
  • SqueezeNet
  • DenseNet
  • Inception v3

隨機(jī)初始化模型

import torchvision.models as models
resnet18 = models.resnet18()
alexnet = models.alexnet()
vgg16 = models.vgg16()
squeezenet = models.squeezenet1_0()
desnet = models.densenet161()
inception =models.inception_v3()

使用預(yù)訓(xùn)練好的參數(shù)

pytorch提供了預(yù)訓(xùn)練的模型,使用torch.utils.model_zoo ,通過讓參數(shù)pretrained =True來構(gòu)建訓(xùn)練好的模型

方法如下

resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception_v3(pretrained=True)

實(shí)例化一個(gè)預(yù)訓(xùn)練好的模型會(huì)自動(dòng)下載權(quán)重到緩存目錄,這個(gè)權(quán)重存儲(chǔ)路徑可以通過環(huán)境變量TORCH_MODEL_ZOO來指定,詳細(xì)的參考torch.utils.model_zoo.load_url() 這個(gè)函數(shù)

有的模型試驗(yàn)了不同的訓(xùn)練和評(píng)估,例如batch normalization。使用model.train()和model.eval()來轉(zhuǎn)換,查看train() or eval() 來了解更多細(xì)節(jié)

所有的預(yù)訓(xùn)練網(wǎng)絡(luò)希望使用相同的方式進(jìn)行歸一化,例如圖片是mini-batch形式的3通道RGB圖片(3HW),H和W最少是244,。 圖像必須加載到[0,1]范圍內(nèi),然后使用均值=[0.485,0.456,0.406]和std =[0.229, 0.224, 0.225]進(jìn)行歸一化。

您可以使用以下轉(zhuǎn)換來normalzie:

normalize = trainform.Normalize9mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])

在這里我們可以找到一個(gè)在Imagenet上的這樣的例子
https://github.com/pytorch/examples/blob/42e5b996718797e45c46a25c55b031e6768f8440/imagenet/main.py#L89-L101

目前這些模型的效果如下

在這里插入圖片描述

下面是模型源碼的具體實(shí)現(xiàn),具體實(shí)現(xiàn)大家可以閱讀源碼

###ALEXNET
torchvision.models.alexnet(pretrained=False, **kwargs)[SOURCE]
AlexNet model architecture from the “One weird trick…” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
###VGG
torchvision.models.vgg11(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg11_bn(pretrained=False, **kwargs)[SOURCE]
VGG 11-layer model (configuration “A”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg13_bn(pretrained=False, **kwargs)[SOURCE]
VGG 13-layer model (configuration “B”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg16_bn(pretrained=False, **kwargs)[SOURCE]
VGG 16-layer model (configuration “D”) with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration “E”)
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.vgg19_bn(pretrained=False, **kwargs)[SOURCE]
VGG 19-layer model (configuration ‘E') with batch normalization
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
RESNET
torchvision.models.resnet18(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-18 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet34(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-34 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet50(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-50 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet101(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-101 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.resnet152(pretrained=False, **kwargs)[SOURCE]
Constructs a ResNet-152 model.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
SQUEEZENET
torchvision.models.squeezenet1_0(pretrained=False, **kwargs)[SOURCE]
SqueezeNet model architecture from the “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size” paper.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.squeezenet1_1(pretrained=False, **kwargs)[SOURCE]
SqueezeNet 1.1 model from the official SqueezeNet repo. SqueezeNet 1.1 has 2.4x less computation and slightly fewer parameters than SqueezeNet 1.0, without sacrificing accuracy.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
DENSENET
torchvision.models.densenet121(pretrained=False, **kwargs)[SOURCE]
Densenet-121 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet169(pretrained=False, **kwargs)[SOURCE]
Densenet-169 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet161(pretrained=False, **kwargs)[SOURCE]
Densenet-161 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
torchvision.models.densenet201(pretrained=False, **kwargs)[SOURCE]
Densenet-201 model from “Densely Connected Convolutional Networks”
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet
INCEPTION V3
torchvision.models.inception_v3(pretrained=False, **kwargs)[SOURCE]
Inception v3 model architecture from “Rethinking the Inception Architecture for Computer Vision”.
Parameters:	pretrained (bool) – If True, returns a model pre-trained on ImageNet

以上就是Pytorch教程內(nèi)置模型源碼實(shí)現(xiàn)的詳細(xì)內(nèi)容,更多關(guān)于Pytorch內(nèi)置模型的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!

相關(guān)文章

  • Python使用numpy模塊創(chuàng)建數(shù)組操作示例

    Python使用numpy模塊創(chuàng)建數(shù)組操作示例

    這篇文章主要介紹了Python使用numpy模塊創(chuàng)建數(shù)組操作,結(jié)合實(shí)例形式分析了Python使用numpy模塊實(shí)現(xiàn)數(shù)組的創(chuàng)建、賦值、修改、打印等相關(guān)操作技巧與注意事項(xiàng),需要的朋友可以參考下
    2018-06-06
  • centos 安裝Python3 及對(duì)應(yīng)的pip教程詳解

    centos 安裝Python3 及對(duì)應(yīng)的pip教程詳解

    這篇文章主要介紹了centos 安裝Python3 及對(duì)應(yīng)的pip的教程,本文給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下
    2019-06-06
  • Python input函數(shù)實(shí)現(xiàn)獲取鍵盤輸入的字符串流程講解

    Python input函數(shù)實(shí)現(xiàn)獲取鍵盤輸入的字符串流程講解

    這篇文章主要介紹了Python input函數(shù)實(shí)現(xiàn)獲取鍵盤輸入的字符串流程,input()是Python的內(nèi)置函數(shù),用于從控制臺(tái)讀取用戶輸入的內(nèi)容。input()函數(shù)總是以字符串的形式來處理用戶輸入的內(nèi)容,所以用戶輸入的內(nèi)容可以包含任何字符
    2023-01-01
  • Python中tkinter開發(fā)的常用29種功能用法總結(jié)

    Python中tkinter開發(fā)的常用29種功能用法總結(jié)

    tkinter(Tk?interface)是Python的標(biāo)準(zhǔn)GUl庫(kù),支持跨平臺(tái)的GUl程序開發(fā),本文為大家整理了tkinter開發(fā)時(shí)常用的29種功能用法,希望對(duì)大家有所幫助
    2023-05-05
  • 零基礎(chǔ)寫python爬蟲之打包生成exe文件

    零基礎(chǔ)寫python爬蟲之打包生成exe文件

    本文介紹了通過pyinstaller和pywin32兩個(gè)插件在windows環(huán)境下,將py文件打包成exe文件,有需要的朋友可以參考下
    2014-11-11
  • Python中字典的緩存池

    Python中字典的緩存池

    這篇文章主要介紹了Python中字典的緩存池,字典的緩存池采用數(shù)組實(shí)現(xiàn)的,并且容量也是80個(gè),下文詳細(xì)介紹需要的小伙伴可以參考一下
    2022-05-05
  • Python pandas軸旋轉(zhuǎn)stack和unstack的使用說明

    Python pandas軸旋轉(zhuǎn)stack和unstack的使用說明

    這篇文章主要介紹了Python pandas軸旋轉(zhuǎn)stack和unstack的使用說明,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧
    2021-03-03
  • python繪圖坐橫坐標(biāo)軸顯示方式

    python繪圖坐橫坐標(biāo)軸顯示方式

    這篇文章主要介紹了python繪圖坐橫坐標(biāo)軸顯示方式,具有很好的參考價(jià)值,希望對(duì)大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教
    2023-09-09
  • pyinstaller打包opencv和numpy程序運(yùn)行錯(cuò)誤解決

    pyinstaller打包opencv和numpy程序運(yùn)行錯(cuò)誤解決

    這篇文章主要介紹了pyinstaller打包opencv和numpy程序運(yùn)行錯(cuò)誤解決,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下
    2019-08-08
  • Python操作lxml庫(kù)實(shí)戰(zhàn)之Xpath篇

    Python操作lxml庫(kù)實(shí)戰(zhàn)之Xpath篇

    XPath是一門在XML文檔中查找信息的語言,下面這篇文章主要給大家介紹了關(guān)于Python操作lxml庫(kù)實(shí)戰(zhàn)之Xpath篇的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),需要的朋友可以參考下
    2022-12-12

最新評(píng)論