欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python利用treap實現(xiàn)雙索引的方法

 更新時間:2021年09月14日 09:17:06   作者:陳屹  
所遍歷的元素一定是遞增(小堆)或是遞減(大堆)關(guān)系,但是我們無法得知左子樹與右子樹兩部分節(jié)點的排序關(guān)系。本文就來講講算法和數(shù)據(jù)結(jié)構(gòu)共同滿足一組特性,感興趣的小伙伴請參考下面文章的內(nèi)容

前言:

在很多應(yīng)用場景下,我們不但需要堆的特性,例如快速知道數(shù)據(jù)最大值或最小值,同時還需要知道元素的排序信息,因此本節(jié)我們看看如何實現(xiàn)魚和熊掌如何兼得。假設(shè)我們有一系列數(shù)據(jù),它的元素由兩部分組成,一部分對應(yīng)商品的名稱,其類型為字符串,一部分對應(yīng)商品的貨存數(shù)量,類型為整形,我們既需要將商品根據(jù)其名稱排序,同時我們又需要快速查詢當前貨存最小的商品,我們?nèi)绾卧O(shè)計相應(yīng)的算法和數(shù)據(jù)結(jié)構(gòu)來滿足這樣特性呢。

舉個例子,如下圖:

從上圖看,它對應(yīng)元素字符串是排序二叉樹,因此根節(jié)點左子樹對應(yīng)元素的字符串都小于根字符串,同時右子樹對應(yīng)的字符串都大于根節(jié)點字符串,同時每個元素還對應(yīng)著相應(yīng)商品的貨存數(shù)量,我們需要及時掌握當前貨存最少的商品,這樣才能在其耗盡之前迅速補貨。但是從上圖可以看到,要保證字符串的排序性就得犧牲對于商品數(shù)量的小堆性質(zhì),例如上圖中water對應(yīng)的貨存與wine對應(yīng)的貨存違背了小堆的性質(zhì),現(xiàn)在問題是如何在保證字符串排序的情況下,確保數(shù)量同時能滿足小堆性質(zhì)。

首先我們先定義一下數(shù)據(jù)結(jié)構(gòu):

class Node: 
    def __init__(self, key: str, priority: float): 
        self._key = key 
        self._priority = priority 
        self._left: Node = None 
        self._right: Node = None 
        self._parent: Node = None 
 
    @property 
    def left(self): 
        return self._left 
 
    @property 
    def right(self): 
        return self._right 
 
    @property 
    def parent(self): 
        return self._parent 
 
    @left.setter 
    def left(self, node): 
        self._left = node 
        if node is not None: 
            node.parent = self 
 
    @right.setter 
    def right(self, node): 
        self._right = node 
        if node is not None: 
            node.parent = self 
 
    @parent.setter 
    def parent(self, node): 
        self._parent = node 
 
    def is_root(self) -> bool: 
        if self.parent is None: 
            return True 
        return False 
 
    def __repr__(self): 
        return "({}, {})".format(self._key, self._priority) 
 
    def __str__(self): 
        repr_str: str = "" 
        repr_str += repr(self) 
        if self.parent is not None: 
            repr_str += " parent: " + repr(self.parent) 
        else: 
            repr_str += " parent: None" 
 
        if self.left is not None: 
            repr_str += " left: " + repr(self.left) 
        else: 
            repr_str += " left: None" 
 
        if self.right is not None: 
            repr_str += " right: " + repr(self.right) 
        else: 
            repr_str += " right: None" 
 
        return repr_str 
 
class Treap: 
    def  __init__(self): 
        self.root : Node = None 

當前問題是,當上圖所示的矛盾出現(xiàn)時,我們?nèi)绾握{(diào)整,使得字符串依然保持排序性質(zhì),同時貨存數(shù)值能滿足小堆性質(zhì)。我們需要根據(jù)幾種情況采取不同操作,首先看第一種,如下圖:

從上圖看到,一種情況是父節(jié)點與左孩子在數(shù)值上違背了堆的性質(zhì),此時我們執(zhí)行一種叫右旋轉(zhuǎn)操作,

其步驟是:

  1. Beer節(jié)點逆時針旋轉(zhuǎn),替換其父節(jié)點;
  2. 父節(jié)點Cabbage順時針旋轉(zhuǎn),成為Beer的右孩子節(jié)點;
  3. 原來Beer的右孩子節(jié)點轉(zhuǎn)變?yōu)?code>Cabbage的左孩子節(jié)點;

完成后結(jié)果如下圖所示:

可以看到,此時字符串依然保持排序二叉樹性質(zhì),同時數(shù)值對應(yīng)的小堆性質(zhì)也得到了滿足。

我們看看代碼實現(xiàn):

class Treap: 
    def __init__(self): 
        self._root: Node = None 
 
    def right_rotate(self, x: Node): 
        if x is None or x.is_root() is True: 
            return 
 
        y = x.parent 
        if y.left != x:  # 必須是左孩子才能右旋轉(zhuǎn) 
            return 
 
        p = y.parent 
        if p is not None:  # 執(zhí)行右旋轉(zhuǎn) 
            if p.left == y: 
                p.left = x 
            else: 
                p.right = x 
        else: 
            self._root = x 
 
        y.left = x.right 
        x.right = y 


接下來我們構(gòu)造一些數(shù)據(jù)測試一下上面的實現(xiàn)是否正確:

def setup_right_rotate(): 
    flour: Node = Node("Flour", 10) 
    cabbage: Node = Node("Cabbage", 77) 
    beer: Node = Node("Beer", 76) 
    bacon: Node = Node("Bacon", 95) 
    butter: Node = Node("Butter", 86) 
 
    flour.parent = None 
    flour.left = cabbage 
    flour.right = None 
    cabbage.left = beer 
 
 
    beer.left = bacon 
    beer.right = butter 
 
    return flour, beer 
 
def print_treap(n: Node): 
    if n is None: 
        return 
 
    print(n) 
    print_treap(n.left) 
    print_treap(n.right) 
 
treap = Treap() 
root, x , cabbage = setup_right_rotate() 
print("---------before right rotate---------:") 
print_treap(root) 
treap.right_rotate(x) 
print("-------after right rotate-------") 
print_treap(root) 


上面代碼執(zhí)行后輸出內(nèi)容如下:

---------before right rotate---------:
(Flour, 10) parent: None left: (Cabbage, 77) right: None
(Cabbage, 77) parent: (Flour, 10) left: (Beer, 76) right: (Eggs, 129)
(Beer, 76) parent: (Cabbage, 77) left: (Bacon, 95) right: (Butter, 86)
(Bacon, 95) parent: (Beer, 76) left: None right: None
(Butter, 86) parent: (Beer, 76) left: None right: None
(Eggs, 129) parent: (Cabbage, 77) left: None right: None
-------after right rotate-------
(Flour, 10) parent: None left: (Beer, 76) right: None
(Beer, 76) parent: (Flour, 10) left: (Bacon, 95) right: (Cabbage, 77)
(Bacon, 95) parent: (Beer, 76) left: None right: None
(Cabbage, 77) parent: (Beer, 76) left: (Butter, 86) right: (Eggs, 129)
(Butter, 86) parent: (Cabbage, 77) left: None right: None
(Eggs, 129) parent: (Cabbage, 77) left: None right: None

對比右旋轉(zhuǎn)前后輸出的二叉樹看,旋轉(zhuǎn)后的二叉樹打印信息的確跟上面我們旋轉(zhuǎn)后對應(yīng)的圖像是一致的。接下來我們實現(xiàn)左旋轉(zhuǎn),先把上圖中cabbage節(jié)點對應(yīng)的值改成75,這樣它與父節(jié)點就違背了小堆性質(zhì):

 

我們要做的是:

  1. cabbage節(jié)點向“左”旋轉(zhuǎn)到beer的位置;
  2. beer的父節(jié)點設(shè)置為cabbage;
  3. beer的右孩子設(shè)置為cabbage的左孩子;
  4. cabbage的左孩子變成beer;左旋轉(zhuǎn)后二叉樹

成形如下:

 

從上圖看,左旋轉(zhuǎn)后,字符串依然保持二叉樹排序性,同時數(shù)值的排放也遵守小堆原則,我們看相應(yīng)的代碼實現(xiàn):

class Treap: 
   ... 
 
    def left_rotate(self, x : Node): 
        if x is None or x.is_root() is True: 
            return 
 
        y = x.parent 
        if y.right is not x: # 只有右孩子才能左旋轉(zhuǎn) 
            return 
 
        p = y.parent 
        if p is not None: 
            if p.left is y: 
                p.left = x 
            else: 
                p.right = x 
        else: 
            self._root = x 
 
        y.right = x.left 
        x.left = y 


為了測試上面代碼實現(xiàn),我們首先把cabbage的值修改,然后調(diào)用上面代碼:

cabbage._priority = 75 
print("-------before left rotate--------") 
print_treap(root) 
treap.left_rotate(cabbage) 
print("-------after left rotate---------") 
print_treap(root) 


代碼運行后輸出結(jié)果為:

-------before left rotate--------
(Flour, 10) parent: None left: (Beer, 76) right: None
(Beer, 76) parent: (Flour, 10) left: (Bacon, 95) right: (Cabbage, 75)
(Bacon, 95) parent: (Beer, 76) left: None right: None
(Cabbage, 75) parent: (Beer, 76) left: (Butter, 86) right: (Eggs, 129)
(Butter, 86) parent: (Cabbage, 75) left: None right: None
(Eggs, 129) parent: (Cabbage, 75) left: None right: None
-------after left rotate---------
(Flour, 10) parent: None left: (Cabbage, 75) right: None
(Cabbage, 75) parent: (Flour, 10) left: (Beer, 76) right: (Eggs, 129)
(Beer, 76) parent: (Cabbage, 75) left: (Bacon, 95) right: (Butter, 86)
(Bacon, 95) parent: (Beer, 76) left: None right: None
(Butter, 86) parent: (Beer, 76) left: None right: None
(Eggs, 129) parent: (Cabbage, 75) left: None right: None

輸出結(jié)果的描述與上圖左旋轉(zhuǎn)后的結(jié)果是一致的。由于Treap相對于元素的key是排序二叉樹,因此在給定一個字符串后,我們很容易查詢字符串是否在Treap中,其本質(zhì)就是排序二叉樹的搜索,其實現(xiàn)我們暫時忽略。

雖然查詢很簡單,但是插入節(jié)點則稍微麻煩,因為插入后,新節(jié)點與其父節(jié)點可能會違背小堆性質(zhì),因此在完成插入后,我們還需使用上面實現(xiàn)的左旋轉(zhuǎn)或右旋轉(zhuǎn)來進行調(diào)整。

到此這篇關(guān)于Python使用treap實現(xiàn)雙索引的方法的文章就介紹到這了,更多相關(guān)Python使用treap實現(xiàn)雙索引內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評論