Python并發(fā)編程隊列與多線程最快發(fā)送http請求方式
Python 并發(fā)編程有很多方法,多線程的標準庫 threading,concurrency,協(xié)程 asyncio,當(dāng)然還有 grequests 這種異步庫,每一個都可以實現(xiàn)上述需求,下面一一用代碼實現(xiàn)一下,本文的代碼可以直接運行,給你以后的并發(fā)編程作為參考:
隊列+多線程
定義一個大小為 400 的隊列,然后開啟 200 個線程,每個線程都是不斷的從隊列中獲取 url 并訪問。
主線程讀取文件中的 url 放入隊列中,然后等待隊列中所有的元素都被接收和處理完畢。代碼如下:
from threading import Thread
import sys
from queue import Queue
import requests
concurrent = 200
def doWork():
while True:
url = q.get()
status, url = getStatus(url)
doSomethingWithResult(status, url)
q.task_done()
def getStatus(ourl):
try:
res = requests.get(ourl)
return res.status_code, ourl
except:
return "error", ourl
def doSomethingWithResult(status, url):
print(status, url)
q = Queue(concurrent * 2)
for i in range(concurrent):
t = Thread(target=doWork)
t.daemon = True
t.start()
try:
for url in open("urllist.txt"):
q.put(url.strip())
q.join()
except KeyboardInterrupt:
sys.exit(1)
運行結(jié)果如下:

有沒有 get 到新技能?
線程池
如果你使用線程池,推薦使用更高級的 concurrent.futures 庫:
import concurrent.futures
import requests
out = []
CONNECTIONS = 100
TIMEOUT = 5
urls = []
with open("urllist.txt") as reader:
for url in reader:
urls.append(url.strip())
def load_url(url, timeout):
ans = requests.get(url, timeout=timeout)
return ans.status_code
with concurrent.futures.ThreadPoolExecutor(max_workers=CONNECTIONS) as executor:
future_to_url = (executor.submit(load_url, url, TIMEOUT) for url in urls)
for future in concurrent.futures.as_completed(future_to_url):
try:
data = future.result()
except Exception as exc:
data = str(type(exc))
finally:
out.append(data)
print(data)
協(xié)程 + aiohttp
協(xié)程也是并發(fā)非常常用的工具了:
import asyncio
from aiohttp import ClientSession, ClientConnectorError
async def fetch_html(url: str, session: ClientSession, **kwargs) -> tuple:
try:
resp = await session.request(method="GET", url=url, **kwargs)
except ClientConnectorError:
return (url, 404)
return (url, resp.status)
async def make_requests(urls: set, **kwargs) -> None:
async with ClientSession() as session:
tasks = []
for url in urls:
tasks.append(
fetch_html(url=url, session=session, **kwargs)
)
results = await asyncio.gather(*tasks)
for result in results:
print(f'{result[1]} - {str(result[0])}')
if __name__ == "__main__":
import sys
assert sys.version_info >= (3, 7), "Script requires Python 3.7+."
with open("urllist.txt") as infile:
urls = set(map(str.strip, infile))
asyncio.run(make_requests(urls=urls))
grequests
這是個第三方庫,目前有 3.8K 個星,就是 Requests + Gevent,讓異步 http 請求變得更加簡單。Gevent 的本質(zhì)還是協(xié)程。
使用前:
pip install grequests
使用起來那是相當(dāng)?shù)暮唵危?/p>
import grequests
urls = []
with open("urllist.txt") as reader:
for url in reader:
urls.append(url.strip())
rs = (grequests.get(u) for u in urls)
for result in grequests.map(rs):
print(result.status_code, result.url)
注意 grequests.map(rs) 是并發(fā)執(zhí)行的。運行結(jié)果如下:

也可以加入異常處理:
>>> def exception_handler(request, exception):
... print("Request failed")
>>> reqs = [
... grequests.get('http://httpbin.org/delay/1', timeout=0.001),
... grequests.get('http://fakedomain/'),
... grequests.get('http://httpbin.org/status/500')]
>>> grequests.map(reqs, exception_handler=exception_handler)
Request failed
Request failed
[None, None, <Response [500]>]
最后的話
今天分享了并發(fā) http 請求的幾種實現(xiàn)方式,有人說異步(協(xié)程)性能比多線程好,其實要分場景看的,沒有一種方法適用所有的場景,筆者就曾做過一個實驗,也是請求 url,當(dāng)并發(fā)數(shù)量超過 500 時,協(xié)程明顯變慢。
以上就是Python并發(fā)編程隊列與多線程最快發(fā)送http請求方式的詳細內(nèi)容,更多關(guān)于Python并發(fā)編程隊列與多線程的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Windows下Python使用Pandas模塊操作Excel文件的教程
Pandas是一個強大的Python數(shù)據(jù)分析模塊,這里我們先使用ANACONDA來幫助獲取Pandas所以來的一些環(huán)境,然后來初步學(xué)習(xí)Windows下Python使用Pandas模塊操作Excel文件的教程2016-05-05
python直接調(diào)用和使用swig法方調(diào)用c++庫
這篇文章主要介紹了python直接調(diào)用和使用swig法方調(diào)用c++庫,c++運算速度快于python,python簡單易寫。很多時候?qū)τ谝延械腸++代碼也不想用python重寫,此時就自然而然地想到用python調(diào)用c或者c++,兩全其美,需要的朋友可以參考一下2022-03-03

