Python機(jī)器學(xué)習(xí)NLP自然語言處理Word2vec電影影評建模
概述
從今天開始我們將開啟一段自然語言處理 (NLP) 的旅程. 自然語言處理可以讓來處理, 理解, 以及運(yùn)用人類的語言, 實(shí)現(xiàn)機(jī)器語言和人類語言之間的溝通橋梁.
詞向量
我們先來說說詞向量究竟是什么. 當(dāng)我們把文本交給算法來處理的時(shí)候, 計(jì)算機(jī)并不能理解我們輸入的文本, 詞向量就由此而生了. 簡單的來說, 詞向量就是將詞語轉(zhuǎn)換成數(shù)字組成的向量.
當(dāng)我們描述一個(gè)人的時(shí)候, 我們會(huì)使用身高體重等種種指標(biāo), 這些指標(biāo)就可以當(dāng)做向量. 有了向量我們就可以使用不同方法來計(jì)算相似度.
那我們?nèi)绾蝸砻枋稣Z言的特征呢? 我們把語言分割成一個(gè)個(gè)詞, 然后在詞的層面上構(gòu)建特征.
詞向量維度
詞向量的維度越高, 其所能提供的信息也就越多, 計(jì)算結(jié)果的可靠性就更值得信賴.
50 維的詞向量:
用熱度圖表示一下:
從上圖我們可以看出, 相似的詞在特征表達(dá)中比較相似. 由此也可以證明詞的特征是有意義的.
代碼實(shí)現(xiàn)
預(yù)處理
import numpy as np import pandas as pd import itertools import re from bs4 import BeautifulSoup from sklearn.feature_extraction.text import CountVectorizer from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt import nltk # 停用詞 stop_words = pd.read_csv("data/stopwords.txt", index_col=False, quoting=3, sep="\n", names=["stop_words"]) stop_words = [word.strip() for word in stop_words["stop_words"].values] def load_train_data(): """讀取訓(xùn)練數(shù)據(jù)""" # 語料 data = pd.read_csv("data/labeledTrainData.tsv", sep="\t", escapechar="\\") print(data[:5]) print("訓(xùn)練評論數(shù)量:", len(data)) # 25,000 return data def load_test_data(): # 語料 data = pd.read_csv("data/unlabeledTrainData.tsv", sep="\t", escapechar="\\") print("測試評論數(shù)量:", len(data)) # 50,000 return data def pre_process(text): # 去除網(wǎng)頁鏈接 text = BeautifulSoup(text, "html.parser").get_text() # 去除標(biāo)點(diǎn) text = re.sub("[^a-zA-Z]", " ", text) # 分詞 words = text.lower().split() # 去除停用詞 words = [w for w in words if w not in stop_words] return " ".join(words) def split_train_data(): # 讀取文件 data = pd.read_csv("data/train.csv") print(data.head()) # 抽取bag of words特征 vec = CountVectorizer(max_features=5000) # 擬合 vec.fit(data["review"]) # 轉(zhuǎn)換 train_data_features = vec.transform(data["review"]).toarray() print(train_data_features.shape) # 詞袋 print(vec.get_feature_names()) # 分割數(shù)據(jù)集 X_train, X_test, y_train, y_test = train_test_split(train_data_features, data["sentiment"], test_size=0.2, random_state=0) return X_train, X_test, y_train, y_test def test(): # 讀取測試數(shù)據(jù) data = pd.read_csv("data/test.csv") print(data.head()) tokenizer = nltk.data.load("tokenizers/punkt/english.pickle") # 分詞 def split_sentences(review): raw_sentences = tokenizer.tokenize(review.strip()) return sentences sentences = sum(data["review"][:10].apply(split_sentences), []) def visualize(cm, classes, title="Confusion matrix", cmap=plt.cm.Blues): plt.imshow(cm, interpolation="nearest", cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=0) plt.yticks(tick_marks, classes) thresh = cm.max() for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, cm[i, j], horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel("True label") plt.xlabel("Predicted label") plt.show() if __name__ == '__main__': # # 處理訓(xùn)練數(shù)據(jù) # train_data = load_train_data() # train_data["review"] = train_data["review"].apply(pre_process) # print(train_data.head()) # # # 保存 # train_data.to_csv("data/train.csv") # # 處理訓(xùn)練數(shù)據(jù) # test_data = load_test_data() # test_data["review"] = test_data["review"].apply(pre_process) # print( test_data.head()) # # # 保存 # test_data.to_csv("data/test.csv") split_train_data()
主程序
import pandas as pd import nltk from gensim.models.word2vec import Word2Vec def pre_process(): """預(yù)處理""" # 讀取測試數(shù)據(jù) data = pd.read_csv("data/test.csv") print(data.head()) # 存放結(jié)果 result = [] # 分詞 for line in data["review"]: result.append(nltk.word_tokenize(line)) return result def main(): # 獲取分詞語料 word_list = pre_process() # 設(shè)定詞向量訓(xùn)練的參數(shù) num_features = 300 # Word vector dimensionality min_word_count = 40 # Minimum word count num_workers = 4 # Number of threads to run in parallel context = 10 # Context window size model_name = '{}features_{}minwords_{}context.model'.format(num_features, min_word_count, context) # 創(chuàng)建w2c模型 model = Word2Vec(sentences=word_list, workers=num_workers, vector_size=num_features, min_count=min_word_count, window=context) # 保存模型 model.save(model_name) def test(): # 加載模型 model = Word2Vec.load("300features_40minwords_10context.model") # 不匹配 match = model.wv.doesnt_match(['man','woman','child','kitchen']) print(match) # 最相似 print(model.wv.most_similar("boy")) print(model.wv.most_similar("bad")) if __name__ == '__main__': test()
輸出結(jié)果:
2021-09-16 20:36:40.791181: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 Unnamed: 0 id sentiment review 0 0 5814_8 1 stuff moment mj ve started listening music wat... 1 1 2381_9 1 classic war worlds timothy hines entertaining ... 2 2 7759_3 0 film starts manager nicholas bell investors ro... 3 3 3630_4 0 assumed praised film filmed opera didn read do... 4 4 9495_8 1 superbly trashy wondrously unpretentious explo... 73423 [[15958 623 12368 4459 622 835 30 152 2097 2408 35364 57143 892 2997 766 42223 967 266 25276 157 108 696 1631 198 2576 9850 3745 27 52 3789 9503 696 526 52 354 862 474 38 2 101 11027 696 6456 22390 969 5873 5376 4044 623 1401 2069 718 618 92 96 138 1345 714 96 18 123 1770 518 3314 354 983 1888 520 83 73 983 2 28 28635 1044 2054 401 1071 85 8565 8957 7226 804 46 224 447 2113 2691 5742 10 5 3217 943 5045 980 373 28 873 438 389 41 23 19 56 122 9 253 27176 2149 19 90 57144 53 4874 696 6558 136 2067 10682 48 518 1482 9 3668 1587 3786 2 110 10 506 25150 20744 340 33 316 17 4824 3892 978 14 10150 2596 766 42223 5082 4784 700 198 6276 5254 700 198 2334 696 20879 5 86 30 2 583 2872 30601 30 86 28 83 73 32 96 18 2 224 708 30 167 7 3791 216 45 513 2 2310 513 1860 4536 1925 414 1321 578 7434 851 696 997 5354 57145 162 30 2 91 1839] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 357 684 28 3027 10371 5801 20987 21481 19800 1 3027 10371 21481 19800 1719 204 49 168 250 7355 1547 374 401 5415 24 1719 24 49 168 7355 1547 3610 21481 19800 123 204 49 168 1102 1547 656 213 5432 5183 61 4 66166 20 36 56 7 5183 2025 116 5031 11 45 782] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2189 1 586 2189 15 1855 615 400 5394 3797 23866 2892 481 2892 810 22020 17820 1 741 231 20 746 2028 1040 6089 816 5555 41772 1762 26 811 288 8 796 45] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 310 1734 78 1906 78 1906 1412 1985 78 7644 1412 244 9287 7092 6374 2584 6183 3795 3080 1288 2217 3534 6005 4851 1543 762 1797 26144 699 237 6745 7 1288 1415 9003 5623 237 1669 17987 874 421 234 1278 347 9287 1609 7100 1065 75 9800 3344 76 5021 47 380 3015 14366 6523 1396 851 22330 3465 20861 7106 6374 340 60 19035 3089 5081 3 7 1695 10735 3582 92 6374 176 8348 60 1491 11540 28826 1847 464 4099 22 3561 51 22 1538 1027 38926 2195 1966 3089 33 19894 287 142 6374 184 37 4025 67 325 37 421 549 21976 28 7744 2466 31533 27 2836 1339 6374 14805 1670 4666 60 33 12] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 27 52 4639 9 5774 1545 8575 855 10463 2688 21019 1542 1701 653 9765 9 189 706 2212 18342 566 437 2639 4311 4504 26110 307 496 893 317 1 27 52 587]] [[0. 1.] [0. 1.] [0. 1.] [1. 0.] [0. 1.]] 2021-09-16 20:36:46.488438: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set 2021-09-16 20:36:46.489070: W tensorflow/stream_executor/platform/default/dso_loader.cc:60] Could not load dynamic library 'libcuda.so.1'; dlerror: /usr/lib/x86_64-linux-gnu/libcuda.so.1: file too short; LD_LIBRARY_PATH: /usr/local/nvidia/lib:/usr/local/nvidia/lib64:/usr/local/cuda/lib64/:/usr/lib/x86_64-linux-gnu 2021-09-16 20:36:46.489097: W tensorflow/stream_executor/cuda/cuda_driver.cc:326] failed call to cuInit: UNKNOWN ERROR (303) 2021-09-16 20:36:46.489128: I tensorflow/stream_executor/cuda/cuda_diagnostics.cc:156] kernel driver does not appear to be running on this host (313c6f2d15e2): /proc/driver/nvidia/version does not exist 2021-09-16 20:36:46.489488: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the following CPU instructions in performance-critical operations: AVX512F To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags. 2021-09-16 20:36:46.493241: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= embedding (Embedding) (None, None, 200) 14684800 _________________________________________________________________ lstm (LSTM) (None, 200) 320800 _________________________________________________________________ dropout (Dropout) (None, 200) 0 _________________________________________________________________ dense (Dense) (None, 64) 12864 _________________________________________________________________ dense_1 (Dense) (None, 2) 130 ================================================================= Total params: 15,018,594 Trainable params: 15,018,594 Non-trainable params: 0 _________________________________________________________________ None 2021-09-16 20:36:46.792534: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:116] None of the MLIR optimization passes are enabled (registered 2) 2021-09-16 20:36:46.830442: I tensorflow/core/platform/profile_utils/cpu_utils.cc:112] CPU Frequency: 2300000000 Hz Epoch 1/2 313/313 [==============================] - 101s 315ms/step - loss: 0.5581 - accuracy: 0.7229 - val_loss: 0.3703 - val_accuracy: 0.8486 Epoch 2/2 313/313 [==============================] - 98s 312ms/step - loss: 0.2174 - accuracy: 0.9195 - val_loss: 0.3016 - val_accuracy: 0.8822
以上就是Python機(jī)器學(xué)習(xí)NLP自然語言處理Word2vec電影影評建模的詳細(xì)內(nèi)容,更多關(guān)于NLP自然語言處理的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
python判定文件目錄是否存在及創(chuàng)建多層目錄
這篇文章主要介紹了python判定文件目錄是否存在及創(chuàng)建多層目錄,文章通過os模塊、try語句、pathlib模塊善終模塊展開詳細(xì)的內(nèi)容,感興趣的朋友可以參考一下2022-06-06Pycharm報(bào)錯(cuò):'NoneType'?object?has?no?attribute?
這篇文章主要給大家介紹了關(guān)于Pycharm報(bào)錯(cuò):'NoneType'?object?has?no?attribute?'bytes'的解決方法,文中通過圖文將解決的方法介紹的非常詳細(xì),需要的朋友可以參考下2022-02-02Python自制一個(gè)PDF轉(zhuǎn)PNG圖片小工具
這篇文章主要為大家詳細(xì)介紹了如何利用Python中的PyQt5自制一個(gè)PDF轉(zhuǎn)PNG格式圖片的小工具,文中的示例代碼講解詳細(xì),感興趣的可以了解一下2023-02-02Python學(xué)習(xí)筆記之文件的讀寫操作實(shí)例分析
這篇文章主要介紹了Python學(xué)習(xí)筆記之文件的讀寫操作,結(jié)合實(shí)例形式詳細(xì)分析了Python常見的文件讀寫操作實(shí)現(xiàn)技巧及相關(guān)注意事項(xiàng),需要的朋友可以參考下2019-08-08pytorch使用過程中遇到的錯(cuò)誤處理之內(nèi)存溢出問題
這篇文章主要介紹了pytorch使用過程中遇到的錯(cuò)誤處理之內(nèi)存溢出問題,具有很好的參考價(jià)值,希望對大家有所幫助,如有錯(cuò)誤或未考慮完全的地方,望不吝賜教2023-09-09