欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

python實戰(zhàn)之Scrapy框架爬蟲爬取微博熱搜

 更新時間:2021年09月22日 16:16:01   作者:潯汐  
前面講解了Scrapy中各個模塊基本使用方法以及代理池、Cookies池。接下來我們以一個反爬比較強的網(wǎng)站新浪微博為例,來實現(xiàn)一下Scrapy的大規(guī)模爬取。

前言:大概一年前寫的,前段時間跑了下,發(fā)現(xiàn)還能用,就分享出來了供大家學(xué)習,代碼的很多細節(jié)不太記得了,也盡力做了優(yōu)化。
因為畢竟是微博,反爬技術(shù)手段還是很周全的,怎么繞過反爬的話要在這說都可以單獨寫幾篇文章了(包括網(wǎng)頁動態(tài)加載,ajax動態(tài)請求,token密鑰等等,特別是二級評論,藏得很深,記得當時想了很久才成功拿到),直接上代碼。

主要實現(xiàn)的功能:
0.理所應(yīng)當?shù)?繞過了各種反爬。
1.爬取全部的熱搜主要內(nèi)容。
2.爬取每條熱搜的相關(guān)微博。
3.爬取每條相關(guān)微博的評論,評論用戶的各種詳細信息。
4.實現(xiàn)了自動翻譯,理論上來說,是可以拿下與熱搜相關(guān)的任何細節(jié),但數(shù)據(jù)量比較大,推薦使用數(shù)據(jù)庫對這個爬蟲程序進行優(yōu)化(因為當時還沒學(xué)數(shù)據(jù)庫,不會用,就按照一定格式在本地進行了存儲)

(未實現(xiàn)功能):
利用爬取數(shù)據(jù)構(gòu)建社交網(wǎng)??蓸?gòu)建python的數(shù)據(jù)分析,將爬取的用戶構(gòu)成一個社交網(wǎng)絡(luò)。

項目結(jié)構(gòu):

在這里插入圖片描述

weibo.py

用于爬取需要數(shù)據(jù),調(diào)用回調(diào)分析數(shù)據(jù)后移交給item,再由item移交給管道進行處理,包括持久化數(shù)據(jù)等等。

import scrapy
from copy import deepcopy
from time import sleep
import json
from lxml import etree
import re


class WeiboSpider(scrapy.Spider):
    name = 'weibo'
    start_urls = ['https://s.weibo.com/top/summary?Refer=top_hot&topnav=1&wvr=6']
    home_page = "https://s.weibo.com/"
    #攜帶cookie發(fā)起請求
    def start_requests(self):
        cookies = "" #獲取一個cookie
        cookies = {i.split("=")[0]: i.split("=")[1] for i in cookies.split("; ")}
        yield scrapy.Request(
            self.start_urls[0],
            callback=self.parse,
            cookies=cookies
        )

    #分析熱搜和鏈接
    def parse(self, response, **kwargs):
        page_text = response.text
        with open('first.html','w',encoding='utf-8') as fp:
            fp.write(page_text)
        item = {}
        tr = response.xpath('//*[@id="pl_top_realtimehot"]/table//tr')[1:]
        #print(tr)
        for t in tr:
            item['title'] = t.xpath('./td[2]//text()').extract()[1]
            print('title : ',item['title'])
        #item['domain_id'] = response.xpath('//input[@id="sid"]/@value').get()
        #item['description'] = response.xpath('//div[@id="description"]').get()
            detail_url = self.home_page + t.xpath('./td[2]//@href').extract_first()
            item['href'] = detail_url
            print("href:",item['href'])

            #print(item)
            #yield item
            yield scrapy.Request(detail_url,callback=self.parse_item, meta={'item':deepcopy(item)})
            # print("parse完成")
            sleep(3)

            #print(item)
#       item{'title':href,}

    #分析每種熱搜下的各種首頁消息
    def parse_item(self, response, **kwargs):
        # print("開始parse_item")
        item = response.meta['item']
        #print(item)
        div_list = response.xpath('//div[@id="pl_feedlist_index"]//div[@class="card-wrap"]')[1:]
        #print('--------------')
        #print(div_list)
        #details_url_list = []
        #print("div_list : ",div_list)
        #創(chuàng)建名字為標題的文本存儲熱搜
        name = item['title']
        file_path = './' + name
        for div in div_list:
            author = div.xpath('.//div[@class="info"]/div[2]/a/@nick-name').extract_first()
            brief_con = div.xpath('.//p[@node-type="feed_list_content_full"]//text()').extract()
            if brief_con is None:
                brief_con = div.xpath('.//p[@class="txt"]//text()').extract()
            brief_con = ''.join(brief_con)
            print("brief_con : ",brief_con)
            link = div.xpath('.//p[@class="from"]/a/@href').extract_first()

            if author is None or link is None:
                continue
            link = "https:" + link + '_&type=comment'
            news_id = div.xpath('./@mid').extract_first()
            print("news_id : ",news_id)
            # print(link)
            news_time = div.xpath(".//p[@class='from']/a/text()").extract()
            news_time = ''.join(news_time)
            print("news_time:", news_time)
            print("author為:",author)
            item['author'] = author
            item['news_id'] = news_id
            item['news_time'] = news_time
            item['brief_con'] = brief_con
            item['details_url'] = link
            #json鏈接模板:https://weibo.com/aj/v6/comment/big?ajwvr=6&id=4577307216321742&from=singleWeiBo
            link = "https://weibo.com/aj/v6/comment/big?ajwvr=6&id="+ news_id + "&from=singleWeiBo"
            # print(link)

            yield scrapy.Request(link,callback=self.parse_detail,meta={'item':deepcopy(item)})

        #if response.xpath('.//')


    #分析每條消息的詳情和評論
    #https://weibo.com/1649173367/JwjbPDW00?refer_flag=1001030103__&type=comment
    #json數(shù)據(jù)包
    #https://weibo.com/aj/v6/comment/big?ajwvr=6&id=4577307216321742&from=singleWeiBo&__rnd=1606879908312
    def parse_detail(self, response, **kwargs):
        # print("status:",response.status)
        # print("ur;:",response.url)
        # print("request:",response.request)
        # print("headers:",response.headers)
        # #print(response.text)
        # print("parse_detail開始")
        item = response.meta['item']
        all= json.loads(response.text)['data']['html']
        # #print(all)
        with open('3.html','w',encoding='utf-8') as fp:
            fp.write(all)
        tree = etree.HTML(all)
        # print(type(tree))
        # username = tree.xpath('//div[@class="list_con"]/div[@class="WB_text"]/a[1]/text()')
        # usertime = re.findall('<div class="WB_from S_txt2">(.*?)</div>', all)
        # comment = tree.xpath('//div[@class="list_con"]/div[@class="WB_text"]//text()')
        # print(usertime)
        # #因為評論前有個中文的引號,正則格外的好用
        # #comment = re.findall(r'</a>:(.*?)<',all)
        # for i in comment:
        #     for w in i:
        #         if i == "\\n":
        #             comment.pop(i)
        #             break
        # with open("12.txt","w",encoding='utf-8') as fp:
        #     for i in comment:
        #         fp.write(i)
        # print(comment)
        #95-122
        div_lists = tree.xpath('.//div[@class="list_con"]')
        final_lists = []
        #print(div_lists)

        with open('13.txt', 'a', encoding='utf-8') as fp:
            for div in div_lists:
                list = []
                username = div.xpath('./div[@class="WB_text"]/a[1]/text()')[0]
                usertime = div.xpath('.//div[@class="WB_from S_txt2"]/text()')[0]
                usercontent = div.xpath('./div[@class="WB_text"]/text()')
                str = usertime + '\n' + username
                #print(username,usertime,usercontent)
                # fp.write(usertime + '\n' + username)
                for con in usercontent[1:]:
                    str += '\n' + username + '\n' + usertime + '\n' + con + '\n'
                #
                usercontent = ''.join(usercontent)
                #print('usercontent:',usercontent)
                item['username'] = username
                item['usertime'] = usertime
                item['usercontent'] = usercontent
                list.append(username)
                list.append(usertime)
                list.append(usercontent)
                final_lists.append(list)
                #item['user'] = [username,usertime,usercontent]

            item['user'] = final_lists
            yield item

items.py

在這里定義分析的數(shù)據(jù),移交給管道處理

import scrapy


class WeiboproItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    #熱搜標題
    title = scrapy.Field()
    #熱搜的鏈接
    href = scrapy.Field()


    #發(fā)布每條相關(guān)熱搜消息的作者
    author = scrapy.Field()
    #發(fā)布每條相關(guān)熱搜消息的時間
    news_time = scrapy.Field()
    #發(fā)布每條相關(guān)熱搜消息的內(nèi)容
    brief_con = scrapy.Field()
    #發(fā)布每條相關(guān)熱搜消息的詳情鏈接
    details_url = scrapy.Field()
    #詳情頁ID,拿json必備
    news_id = scrapy.Field()

    #傳入每條熱搜消息微博詳情頁下的作者
    username = scrapy.Field()
    #傳入每條熱搜消息微博詳情頁下的時間
    usertime = scrapy.Field()
    #傳入每條熱搜消息微博詳情頁下的評論
    usercontent = scrapy.Field()

    #所有評論和人
    user = scrapy.Field()

middlewares.py

中間件,用于處理spider和服務(wù)器中間的通訊。

import random
# 自定義微博請求的中間件
class WeiboproDownloaderMiddleware(object):

    def process_request(self, request, spider):
        # "設(shè)置cookie"
        cookies = ""
        cookies = {i.split("=")[0]: i.split("=")[1] for i in cookies.split("; ")}
        request.cookies = cookies
        #  設(shè)置ua
        ua = random.choice(spider.settings.get("USER_AGENT_LIST"))
        request.headers["User-Agent"] = ua
        return None

pipelines.py

from itemadapter import ItemAdapter
class WeiboproPipeline:
    fp = None
    def open_spider(self,spider):
        print("starting...")

    def process_item(self, item, spider):

        title = item['title']
        href = item['href']
        author = item['author']
        news_time = item['news_time']
        brief_con = item['brief_con']
        details_url = item['details_url']
        news_id = item['news_id']
        #username = item['username']
        #usertime = item['usertime']
        #usercontent = item['usercontent']
        user = item['user']
        filepath = './' + title + '.txt'
        with open(filepath,'a',encoding='utf-8') as fp:
            fp.write('title:\n' + title + '\n' + 'href:\n'+href + '\n' +'author:\n' + author + '\n' + 'news_time:\n' +news_time + '\n' + 'brief_con\n' + brief_con + '\n' +'details_url:\n' + details_url + '\n' +'news_id'+news_id + '\n')
            for u in user:
                fp.write('username:'+u[0] + '\n' + u[1] + '\n' +'usercontent:\n'+u[2] + '\n\n\n')
            fp.write('---------------------------------------------------------\n')
        fp.close()
        return item

setting.py

設(shè)置spider的屬性,包括在這里已經(jīng)加入了各種瀏覽器請求頭,設(shè)置線程數(shù),爬取頻率等等,能夠讓spider擁有更強大的反爬

# Scrapy settings for weiboPro project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     https://docs.scrapy.org/en/latest/topics/settings.html
#     https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
#     https://docs.scrapy.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'weiboPro'

SPIDER_MODULES = ['weiboPro.spiders']
NEWSPIDER_MODULE = 'weiboPro.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
#USER_AGENT = 'weiboPro (+http://www.yourdomain.com)'
MEDIA_ALLOW_REDIRECTS = True
USER_AGENT_LIST = ["Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.95 Safari/537.36 OPR/26.0.1656.60",
        "Opera/8.0 (Windows NT 5.1; U; en)",
        "Mozilla/5.0 (Windows NT 5.1; U; en; rv:1.8.1) Gecko/20061208 Firefox/2.0.0 Opera 9.50",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; en) Opera 9.50",
        # Firefox
        "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:34.0) Gecko/20100101 Firefox/34.0",
        "Mozilla/5.0 (X11; U; Linux x86_64; zh-CN; rv:1.9.2.10) Gecko/20100922 Ubuntu/10.10 (maverick) Firefox/3.6.10",
        # Safari
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/534.57.2 (KHTML, like Gecko) Version/5.1.7 Safari/534.57.2",
        # chrome
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
        "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
        "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16",
        # 360
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/30.0.1599.101 Safari/537.36",
        "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko",
        # 淘寶瀏覽器
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/536.11 (KHTML, like Gecko) Chrome/20.0.1132.11 TaoBrowser/2.0 Safari/536.11",
        # 獵豹瀏覽器
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.1 (KHTML, like Gecko) Chrome/21.0.1180.71 Safari/537.1 LBBROWSER",
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; LBBROWSER)",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E; LBBROWSER)",
        # QQ瀏覽器
        "Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; .NET4.0C; .NET4.0E; QQBrowser/7.0.3698.400)",
        "Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1; SV1; QQDownload 732; .NET4.0C; .NET4.0E)",
        # sogou瀏覽器
        "Mozilla/5.0 (Windows NT 5.1) AppleWebKit/535.11 (KHTML, like Gecko) Chrome/17.0.963.84 Safari/535.11 SE 2.X MetaSr 1.0",
        "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 5.1; Trident/4.0; SV1; QQDownload 732; .NET4.0C; .NET4.0E; SE 2.X MetaSr 1.0)",
        # maxthon瀏覽器
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Maxthon/4.4.3.4000 Chrome/30.0.1599.101 Safari/537.36",
        # UC瀏覽器
        "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/38.0.2125.122 UBrowser/4.0.3214.0 Safari/537.36"
              ]
LOG_LEVEL = 'ERROR'
# Obey robots.txt rules
ROBOTSTXT_OBEY = False

# Configure maximum concurrent requests performed by Scrapy (default: 16)
#CONCURRENT_REQUESTS = 32

# Configure a delay for requests for the same website (default: 0)
# See https://docs.scrapy.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
#DOWNLOAD_DELAY = 3
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
#COOKIES_ENABLED = False

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See https://docs.scrapy.org/en/latest/topics/spider-middleware.html
# SPIDER_MIDDLEWARES = {
#    'weiboPro.middlewares.WeiboproSpiderMiddleware': 543,
# }

# Enable or disable downloader middlewares
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
   'weiboPro.middlewares.WeiboproDownloaderMiddleware': 543,
}

# Enable or disable extensions
# See https://docs.scrapy.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See https://docs.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'weiboPro.pipelines.WeiboproPipeline': 300,
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See https://docs.scrapy.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

scrapy.cfg

配置文件,沒啥好寫的

[settings]
default = weiboPro.settings

[deploy]
#url = http://localhost:6800/
project = weiboPro

剩下的兩個__init__文件空著就行,用不上。

到此這篇關(guān)于python實戰(zhàn)之Scrapy框架爬蟲爬取微博熱搜的文章就介紹到這了,更多相關(guān)python Scrapy 爬取微博熱搜內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

  • python3 selenium自動化 下拉框定位的例子

    python3 selenium自動化 下拉框定位的例子

    今天小編就為大家分享一篇python3 selenium自動化 下拉框定位的例子,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2019-08-08
  • python 列表推導(dǎo)式使用詳解

    python 列表推導(dǎo)式使用詳解

    這篇文章主要介紹了python 列表推導(dǎo)式使用詳解,文中通過示例代碼介紹的非常詳細,對大家的學(xué)習或者工作具有一定的參考學(xué)習價值,需要的朋友可以參考下
    2019-08-08
  • Python圓周率算法不只是3.14更多玩法揭秘

    Python圓周率算法不只是3.14更多玩法揭秘

    本篇博客將引領(lǐng)讀者穿越數(shù)學(xué)、計算和可視化的領(lǐng)域,通過豐富的示例代碼,揭示π的獨特之處,無論是計算π的各種方法、應(yīng)用領(lǐng)域中的角色,還是π作為無理數(shù)的特性,我們將通過Python的鏡頭,發(fā)現(xiàn)這個數(shù)字在數(shù)學(xué)世界中的非凡之處
    2024-01-01
  • pandas.DataFrame.to_json按行轉(zhuǎn)json的方法

    pandas.DataFrame.to_json按行轉(zhuǎn)json的方法

    今天小編就為大家分享一篇pandas.DataFrame.to_json按行轉(zhuǎn)json的方法,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧
    2018-06-06
  • 分享Pandas庫中的一些寶藏函數(shù)transform()

    分享Pandas庫中的一些寶藏函數(shù)transform()

    Pandas具有很多強大的功能,transform就是其中之一,利用它可以高效地匯總數(shù)據(jù)且不改變數(shù)據(jù)行數(shù),transform是一種什么數(shù)據(jù)操作?如果熟悉SQL的窗口函數(shù),就非常容易理解了
    2021-09-09
  • Numpy中關(guān)于arctan和arctan2的區(qū)別

    Numpy中關(guān)于arctan和arctan2的區(qū)別

    這篇文章主要介紹了Numpy中關(guān)于arctan和arctan2的區(qū)別,具有很好的參考價值,希望對大家有所幫助,如有錯誤或未考慮完全的地方,望不吝賜教
    2023-09-09
  • Python中實例化class的執(zhí)行順序示例詳解

    Python中實例化class的執(zhí)行順序示例詳解

    這篇文章主要給大家介紹了關(guān)于Python中實例化class的執(zhí)行順序的相關(guān)資料,文中通過示例代碼介紹的非常詳細,對大家學(xué)習或者使用python具有一定的參考學(xué)習價值,需要的朋友們隨著小編來一起學(xué)習學(xué)習吧
    2018-10-10
  • Java基礎(chǔ)技術(shù)之反射詳解

    Java基礎(chǔ)技術(shù)之反射詳解

    這篇文章主要介紹了Java基礎(chǔ)技術(shù)之反射詳解,反射就是把Java類中的各個部分,映射成一個個的Java對象,拿到這些對象后可以做一些事情,需要的朋友可以參考下
    2023-07-07
  • python如何導(dǎo)入自己的模塊

    python如何導(dǎo)入自己的模塊

    這篇文章主要介紹了python如何導(dǎo)入自己的模塊,具有很好的參考價值,希望對大家有所幫助。如有錯誤或未考慮完全的地方,望不吝賜教
    2022-02-02
  • python?lazypredict構(gòu)建大量基本模型簡化機器學(xué)習

    python?lazypredict構(gòu)建大量基本模型簡化機器學(xué)習

    這篇文章主要介紹了python?lazypredict構(gòu)建大量基本模型簡化機器學(xué)習,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進步,早日升職加薪
    2024-01-01

最新評論