TensorFlow神經(jīng)網(wǎng)絡(luò)創(chuàng)建多層感知機(jī)MNIST數(shù)據(jù)集
前面使用TensorFlow實(shí)現(xiàn)一個(gè)完整的Softmax Regression,并在MNIST數(shù)據(jù)及上取得了約92%的正確率。
前文傳送門: TensorFlow教程Softmax邏輯回歸識別手寫數(shù)字MNIST數(shù)據(jù)集
現(xiàn)在建含一個(gè)隱層的神經(jīng)網(wǎng)絡(luò)模型(多層感知機(jī))。
import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
n_hidden_1 = 256
n_input = 784
n_classes = 10
# INPUTS AND OUTPUTS
x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先占地方,樣本個(gè)數(shù)不確定為None
y = tf.placeholder(tf.float32, [None, n_classes]) # 用placeholder先占地方,樣本個(gè)數(shù)不確定為None
# NETWORK PARAMETERS
weights = {
'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=0.1)),
'out': tf.Variable(tf.zeros([n_hidden_1, n_classes]))
}
biases = {
'b1': tf.Variable(tf.zeros([n_hidden_1])),
'out': tf.Variable(tf.zeros([n_classes]))
}
print("NETWORK READY")
def multilayer_perceptron(_X, _weights, _biases): # 前向傳播,l1、l2每一層后面加relu激活函數(shù)
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) # 隱層
return (tf.matmul(layer_1, _weights['out']) + _biases['out']) # 返回輸出層的結(jié)果,得到十個(gè)類別的得分值
pred = multilayer_perceptron(x, weights, biases) # 前向傳播的預(yù)測值
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # 交叉熵?fù)p失函數(shù),參數(shù)分別為預(yù)測值pred和實(shí)際label值y,reduce_mean為求平均loss
optm = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度下降優(yōu)化器
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()對比預(yù)測值的索引和實(shí)際label的索引是否一樣,一樣返回True,不一樣返回False
accr = tf.reduce_mean(tf.cast(corr, tf.float32)) # 將pred即True或False轉(zhuǎn)換為1或0,并對所有的判斷結(jié)果求均值
init = tf.global_variables_initializer()
print("FUNCTIONS READY")
# 上面神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)定義好之后,下面定義一些超參數(shù)
training_epochs = 100 # 所有樣本迭代100次
batch_size = 100 # 每進(jìn)行一次迭代選擇100個(gè)樣本
display_step = 5
# LAUNCH THE GRAPH
sess = tf.Session() # 定義一個(gè)Session
sess.run(init) # 在sess里run一下初始化操作
# OPTIMIZE
for epoch in range(training_epochs):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐個(gè)batch的去取數(shù)據(jù)
sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
# Display logs per epoch step
if epoch % display_step == 0:
train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys})
test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels})
print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f"
% (epoch, training_epochs, avg_cost, train_acc, test_acc))
print("DONE")
迭代100次看下效果,程序運(yùn)行結(jié)果如下:
Epoch: 095/100 cost: 0.076462782 TRAIN ACCURACY: 0.990 TEST ACCURACY: 0.970
最終,在測試集上準(zhǔn)確率達(dá)到97%,隨著迭代次數(shù)增加,準(zhǔn)確率還會上升。相比之前的Softmax,訓(xùn)練迭代100次我們的誤差率由8%降到了3%,對識別銀行賬單這種精確度要求很高的場景,可以說是飛躍性的提高。而這個(gè)提升僅靠增加一個(gè)隱層就實(shí)現(xiàn)了,可見多層神經(jīng)網(wǎng)絡(luò)的效果有多顯著。
沒有隱含層的Softmax Regression只能直接從圖像的像素點(diǎn)推斷是哪個(gè)數(shù)字,而沒有特征抽象的過程。多層神經(jīng)網(wǎng)絡(luò)依靠隱含層,則可以組合出高階特征,比如橫線、豎線、圓圈等,之后可以將這些高階特征或者說組件再組合成數(shù)字,就能實(shí)現(xiàn)精準(zhǔn)的匹配和分類。
不過,使用全連接神經(jīng)網(wǎng)絡(luò)也是有局限的,即使我們使用很深的網(wǎng)絡(luò),很多的隱藏節(jié)點(diǎn),很大的迭代次數(shù),也很難在MNIST數(shù)據(jù)集上達(dá)到99%以上的準(zhǔn)確率。
以上就是TensorFlow神經(jīng)網(wǎng)絡(luò)創(chuàng)建多層感知機(jī)MNIST數(shù)據(jù)集的詳細(xì)內(nèi)容,更多關(guān)于TensorFlow創(chuàng)建多層感知機(jī)MNIST數(shù)據(jù)集的資料請關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
Python?Matplotlib實(shí)現(xiàn)三維數(shù)據(jù)的散點(diǎn)圖繪制
這篇文章主要為大家詳細(xì)介紹了Python?Matplotlib實(shí)現(xiàn)三維數(shù)據(jù)的散點(diǎn)圖繪制,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2019-03-03
使用Python實(shí)現(xiàn)簡單的學(xué)生成績管理系統(tǒng)
這篇文章主要為大家詳細(xì)介紹了Python實(shí)現(xiàn)學(xué)生成績管理系統(tǒng),使用數(shù)據(jù)庫,文中示例代碼介紹的非常詳細(xì),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2022-01-01
瀏覽器常用基本操作之python3+selenium4自動化測試(基礎(chǔ)篇3)
瀏覽器常用基本操作有很多種,今天給大家介紹python3+selenium4自動化測試的操作方法,是最最基礎(chǔ)的一篇,對python3 selenium4自動化測試相關(guān)知識感興趣的朋友一起看看吧2021-05-05
Window10上Tensorflow的安裝(CPU和GPU版本)
這篇文章主要介紹了Window10上Tensorflow的安裝(CPU和GPU版本),文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-12-12
Python ValueError: invalid literal for int() with base 10 實(shí)用
這篇文章主要介紹了Python ValueError: invalid literal for int() with base 10 實(shí)用解決方法,本文使用了一個(gè)取巧方法解決了這個(gè)問題,需要的朋友可以參考下2015-06-06
Python中使用多進(jìn)程來實(shí)現(xiàn)并行處理的方法小結(jié)
本篇文章主要介紹了Python中使用多進(jìn)程來實(shí)現(xiàn)并行處理的方法小結(jié),具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-08-08

