Python 非極大值抑制(NMS)的四種實(shí)現(xiàn)詳解
方法1:純python語言實(shí)現(xiàn):簡(jiǎn)介方便、速度慢
方法2:直接利用Cython模塊編譯
方法3:先將全部變量定義為靜態(tài)類型,再利用Cython模塊編譯
方法4:在方法3的基礎(chǔ)上再加入cuda加速模塊, 再利用Cython模塊編譯,即利用gpu加速
一. 幾點(diǎn)說明
1. 簡(jiǎn)單說明Cython:
Cython是一個(gè)快速生成Python擴(kuò)展模塊的工具,從語法層面上來講是Python語法和C語言語法的混血,當(dāng)Python性能遇到瓶頸時(shí),Cython直接將C的原生速度植入Python程序,這樣使Python程序無需使用C重寫,能快速整合原有的Python程序,這樣使得開發(fā)效率和執(zhí)行效率都有很大的提高,而這些中間的部分,都是Cython幫我們做了。
2. 簡(jiǎn)單介紹NMS:
Faster-RCNN中有兩處使用NMS,第一處是訓(xùn)練+預(yù)測(cè)的時(shí)候,利用ProposalCreator來生成proposal的時(shí)候,因?yàn)橹恍枰徊糠謕roposal,所以利用NMS進(jìn)行篩選。第二處使用是預(yù)測(cè)的時(shí)候,當(dāng)?shù)玫?00個(gè)分類與坐標(biāo)偏移結(jié)果的時(shí)候,需要對(duì)每個(gè)類別逐一進(jìn)行非極大值抑制。也許有人問為什么對(duì)于每個(gè)類別不直接取置信度最高的那一個(gè)?因?yàn)橐粡垐D中某個(gè)類別可能不止一個(gè),例如一張圖中有多個(gè)人,直接取最高置信度的只能預(yù)測(cè)其中的一個(gè)人,而通過NMS理想情況下可以使得每個(gè)人(每類中的每個(gè)個(gè)體)都會(huì)有且僅有一個(gè)bbox框。
二. 四種方法實(shí)現(xiàn)
1. 純python實(shí)現(xiàn):nms_py.py
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon May 7 21:45:37 2018 @author: lps """ import numpy as np boxes=np.array([[100,100,210,210,0.72], [250,250,420,420,0.8], [220,220,320,330,0.92], [100,100,210,210,0.72], [230,240,325,330,0.81], [220,230,315,340,0.9]]) def py_cpu_nms(dets, thresh): # dets:(m,5) thresh:scaler x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] areas = (y2-y1+1) * (x2-x1+1) scores = dets[:,4] keep = [] index = scores.argsort()[::-1] while index.size >0: i = index[0] # every time the first is the biggst, and add it directly keep.append(i) x11 = np.maximum(x1[i], x1[index[1:]]) # calculate the points of overlap y11 = np.maximum(y1[i], y1[index[1:]]) x22 = np.minimum(x2[i], x2[index[1:]]) y22 = np.minimum(y2[i], y2[index[1:]]) w = np.maximum(0, x22-x11+1) # the weights of overlap h = np.maximum(0, y22-y11+1) # the height of overlap overlaps = w*h ious = overlaps / (areas[i]+areas[index[1:]] - overlaps) idx = np.where(ious<=thresh)[0] index = index[idx+1] # because index start from 1 return keep import matplotlib.pyplot as plt def plot_bbox(dets, c='k'): x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] plt.plot([x1,x2], [y1,y1], c) plt.plot([x1,x1], [y1,y2], c) plt.plot([x1,x2], [y2,y2], c) plt.plot([x2,x2], [y1,y2], c) plt.title("after nms") plot_bbox(boxes,'k') # before nms keep = py_cpu_nms(boxes, thresh=0.7) plot_bbox(boxes[keep], 'r')# after nms
結(jié)果大致這樣:
新建nms文件夾,將nms_py.py 和__init__.py(空)文件放在其內(nèi)成為包,可以調(diào)用。然后在nms文件夾外新建測(cè)試運(yùn)行時(shí)間腳本 test_num.py:
import numpy as np import time from nms.nums_py import py_cpu_nms # for cpu #from nms.gpu_nms import gpu_nms # for gpu np.random.seed( 1 ) # keep fixed num_rois = 6000 minxy = np.random.randint(50,145,size=(num_rois ,2)) maxxy = np.random.randint(150,200,size=(num_rois ,2)) score = 0.8*np.random.random_sample((num_rois ,1))+0.2 boxes_new = np.concatenate((minxy,maxxy,score), axis=1).astype(np.float32) def nms_test_time(boxes_new): thresh = [0.7,0.8,0.9] T = 50 for i in range(len(thresh)): since = time.time() for t in range(T): keep = py_cpu_nms(boxes_new, thresh=thresh[i]) # for cpu # keep = gpu_nms(boxes_new, thresh=thresh[i]) # for gpu print("thresh={:.1f}, time wastes:{:.4f}".format(thresh[i], (time.time()-since)/T)) return keep if __name__ =="__main__": nms_test_time(boxes_new)
測(cè)試數(shù)據(jù)為6000個(gè)初始的rois,并設(shè)置nms閾值為0.7~0.9。閾值越大越慢,因?yàn)闈M足小于閾值的roi越多,需要循環(huán)的次數(shù)也越多。對(duì)每個(gè)閾值循環(huán)執(zhí)行NMS 50次求平均:
直接運(yùn)行得到運(yùn)行時(shí)間:
thresh=0.7, time wastes:0.0287
thresh=0.8, time wastes:0.1057
thresh=0.9, time wastes:0.4204
2.直接利用Cython模塊編譯:nms_py1.pyx
首先復(fù)制一份nms_py.py并重命名為nms_py1.pyx,pyx即為Cython文件。然后在nms文件夾下新建setup1.py:
from distutils.core import setup from Cython.Build import cythonize setup( name = 'nms_module', ext_modules = cythonize('nums_py1.pyx'), )
下面開始生成動(dòng)態(tài)鏈接庫(kù):在終端執(zhí)行:
python3 setup1.py build
然后在當(dāng)前目錄會(huì)生成nums_py1.c,即C源代碼,然后在nms/build/lib.linux-x86_64-3.5下會(huì)生成nums_py1.cpython-35m-x86_64-linux-gnu.so這一動(dòng)態(tài)鏈接庫(kù),將其復(fù)制一份至nms文件夾下,則現(xiàn)在可以在測(cè)試腳本中進(jìn)行測(cè)試了:只需將測(cè)試腳本中的 from nms.nums_py import py_cpu_nms 改為 from nms.nums1_py import py_cpu_nms 即可。因?yàn)閜yx是不可以直接執(zhí)行的,只有build完成后才可以。
運(yùn)行測(cè)試腳本得到以下結(jié)果:
thresh=0.7, time wastes:0.0272
thresh=0.8, time wastes:0.1038
thresh=0.9, time wastes:0.4184
發(fā)現(xiàn)與純python速度相比僅有微小提升,下面再利用第3種方法。
3. 更改變量定義后再利用Cython模塊編譯:nms_py2.pyx
import numpy as np cimport numpy as np # #boxes=np.array([[100,100,210,210,0.72], # [250,250,420,420,0.8], # [220,220,320,330,0.92], # [100,100,210,210,0.72], # [230,240,325,330,0.81], # [220,230,315,340,0.9]]) # cdef inline np.float32_t max(np.float32_t a, np.float32_t b): return a if a >= b else b cdef inline np.float32_t min(np.float32_t a, np.float32_t b): return a if a <= b else b def py_cpu_nms(np.ndarray[np.float32_t,ndim=2] dets, np.float thresh): # dets:(m,5) thresh:scaler cdef np.ndarray[np.float32_t, ndim=1] x1 = dets[:,0] cdef np.ndarray[np.float32_t, ndim=1] y1 = dets[:,1] cdef np.ndarray[np.float32_t, ndim=1] x2 = dets[:,2] cdef np.ndarray[np.float32_t, ndim=1] y2 = dets[:,3] cdef np.ndarray[np.float32_t, ndim=1] scores = dets[:, 4] cdef np.ndarray[np.float32_t, ndim=1] areas = (y2-y1+1) * (x2-x1+1) cdef np.ndarray[np.int_t, ndim=1] index = scores.argsort()[::-1] # can be rewriten keep = [] cdef int ndets = dets.shape[0] cdef np.ndarray[np.int_t, ndim=1] suppressed = np.zeros(ndets, dtype=np.int) cdef int _i, _j cdef int i, j cdef np.float32_t ix1, iy1, ix2, iy2, iarea cdef np.float32_t w, h cdef np.float32_t overlap, ious j=0 for _i in range(ndets): i = index[_i] if suppressed[i] == 1: continue keep.append(i) ix1 = x1[i] iy1 = y1[i] ix2 = x2[i] iy2 = y2[i] iarea = areas[i] for _j in range(_i+1, ndets): j = index[_j] if suppressed[j] == 1: continue xx1 = max(ix1, x1[j]) yy1 = max(iy1, y1[j]) xx2 = min(ix2, x2[j]) yy2 = min(iy2, y2[j]) w = max(0.0, xx2-xx1+1) h = max(0.0, yy2-yy1+1) overlap = w*h ious = overlap / (iarea + areas[j] - overlap) if ious>thresh: suppressed[j] = 1 return keep import matplotlib.pyplot as plt def plot_bbox(dets, c='k'): x1 = dets[:,0] y1 = dets[:,1] x2 = dets[:,2] y2 = dets[:,3] plt.plot([x1,x2], [y1,y1], c) plt.plot([x1,x1], [y1,y2], c) plt.plot([x1,x2], [y2,y2], c) plt.plot([x2,x2], [y1,y2], c)
其中變量靜態(tài)類型可以極大的提高效率,原因是參與計(jì)算的主要是變量,主要的變化是將變量利用cdef定義。
然后同上建立setup2.py:
from distutils.core import setup from Cython.Build import cythonize setup( name = 'nms_module', ext_modules = cythonize('nums_py2.pyx'), )
build后將動(dòng)態(tài)庫(kù).so拷貝到nms文件夾下,然后同上修改測(cè)試腳本,執(zhí)行測(cè)試腳本:
thresh=0.7, time wastes:0.0019
thresh=0.8, time wastes:0.0028
thresh=0.9, time wastes:0.0036
發(fā)現(xiàn)速度相較于純python分別提升了15倍、38倍、118倍!
4. 在方法3的基礎(chǔ)上利用GPU:gpu_nms.pyx
import numpy as np cimport numpy as np assert sizeof(int) == sizeof(np.int32_t) cdef extern from "gpu_nms.hpp": void _nms(np.int32_t*, int*, np.float32_t*, int, int, float, int) def gpu_nms(np.ndarray[np.float32_t, ndim=2] dets, np.float thresh, np.int32_t device_id=0): cdef int boxes_num = dets.shape[0] cdef int boxes_dim = dets.shape[1] cdef int num_out cdef np.ndarray[np.int32_t, ndim=1] \ keep = np.zeros(boxes_num, dtype=np.int32) cdef np.ndarray[np.float32_t, ndim=1] \ scores = dets[:, 4] cdef np.ndarray[np.int_t, ndim=1] \ order = scores.argsort()[::-1] cdef np.ndarray[np.float32_t, ndim=2] \ sorted_dets = dets[order, :] _nms(&keep[0], &num_out, &sorted_dets[0, 0], boxes_num, boxes_dim, thresh, device_id) keep = keep[:num_out] return list(order[keep])
再建立文件nms_gpu.hpp:
void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id);
和nms_kernel.cu文件:
#include "gpu_nms.hpp" #include <vector> #include <iostream> #define CUDA_CHECK(condition) \ /* Code block avoids redefinition of cudaError_t error */ \ do { \ cudaError_t error = condition; \ if (error != cudaSuccess) { \ std::cout << cudaGetErrorString(error) << std::endl; \ } \ } while (0) #define DIVUP(m,n) ((m) / (n) + ((m) % (n) > 0)) int const threadsPerBlock = sizeof(unsigned long long) * 8; __device__ inline float devIoU(float const * const a, float const * const b) { float left = max(a[0], b[0]), right = min(a[2], b[2]); float top = max(a[1], b[1]), bottom = min(a[3], b[3]); float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f); float interS = width * height; float Sa = (a[2] - a[0] + 1) * (a[3] - a[1] + 1); float Sb = (b[2] - b[0] + 1) * (b[3] - b[1] + 1); return interS / (Sa + Sb - interS); } __global__ void nms_kernel(const int n_boxes, const float nms_overlap_thresh, const float *dev_boxes, unsigned long long *dev_mask) { const int row_start = blockIdx.y; const int col_start = blockIdx.x; // if (row_start > col_start) return; const int row_size = min(n_boxes - row_start * threadsPerBlock, threadsPerBlock); const int col_size = min(n_boxes - col_start * threadsPerBlock, threadsPerBlock); __shared__ float block_boxes[threadsPerBlock * 5]; if (threadIdx.x < col_size) { block_boxes[threadIdx.x * 5 + 0] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 0]; block_boxes[threadIdx.x * 5 + 1] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 1]; block_boxes[threadIdx.x * 5 + 2] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 2]; block_boxes[threadIdx.x * 5 + 3] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 3]; block_boxes[threadIdx.x * 5 + 4] = dev_boxes[(threadsPerBlock * col_start + threadIdx.x) * 5 + 4]; } __syncthreads(); if (threadIdx.x < row_size) { const int cur_box_idx = threadsPerBlock * row_start + threadIdx.x; const float *cur_box = dev_boxes + cur_box_idx * 5; int i = 0; unsigned long long t = 0; int start = 0; if (row_start == col_start) { start = threadIdx.x + 1; } for (i = start; i < col_size; i++) { if (devIoU(cur_box, block_boxes + i * 5) > nms_overlap_thresh) { t |= 1ULL << i; } } const int col_blocks = DIVUP(n_boxes, threadsPerBlock); dev_mask[cur_box_idx * col_blocks + col_start] = t; } } void _set_device(int device_id) { int current_device; CUDA_CHECK(cudaGetDevice(¤t_device)); if (current_device == device_id) { return; } // The call to cudaSetDevice must come before any calls to Get, which // may perform initialization using the GPU. CUDA_CHECK(cudaSetDevice(device_id)); } void _nms(int* keep_out, int* num_out, const float* boxes_host, int boxes_num, int boxes_dim, float nms_overlap_thresh, int device_id) { _set_device(device_id); float* boxes_dev = NULL; unsigned long long* mask_dev = NULL; const int col_blocks = DIVUP(boxes_num, threadsPerBlock); CUDA_CHECK(cudaMalloc(&boxes_dev, boxes_num * boxes_dim * sizeof(float))); CUDA_CHECK(cudaMemcpy(boxes_dev, boxes_host, boxes_num * boxes_dim * sizeof(float), cudaMemcpyHostToDevice)); CUDA_CHECK(cudaMalloc(&mask_dev, boxes_num * col_blocks * sizeof(unsigned long long))); dim3 blocks(DIVUP(boxes_num, threadsPerBlock), DIVUP(boxes_num, threadsPerBlock)); dim3 threads(threadsPerBlock); nms_kernel<<<blocks, threads>>>(boxes_num, nms_overlap_thresh, boxes_dev, mask_dev); std::vector<unsigned long long> mask_host(boxes_num * col_blocks); CUDA_CHECK(cudaMemcpy(&mask_host[0], mask_dev, sizeof(unsigned long long) * boxes_num * col_blocks, cudaMemcpyDeviceToHost)); std::vector<unsigned long long> remv(col_blocks); memset(&remv[0], 0, sizeof(unsigned long long) * col_blocks); int num_to_keep = 0; for (int i = 0; i < boxes_num; i++) { int nblock = i / threadsPerBlock; int inblock = i % threadsPerBlock; if (!(remv[nblock] & (1ULL << inblock))) { keep_out[num_to_keep++] = i; unsigned long long *p = &mask_host[0] + i * col_blocks; for (int j = nblock; j < col_blocks; j++) { remv[j] |= p[j]; } } } *num_out = num_to_keep; CUDA_CHECK(cudaFree(boxes_dev)); CUDA_CHECK(cudaFree(mask_dev)); }
然后在nms文件夾外建立setup3.py:
from distutils.core import setup from Cython.Build import cythonize from distutils.extension import Extension from Cython.Distutils import build_ext import subprocess import numpy as np import os from os.path import join as pjoin def find_in_path(name, path): "Find a file in a search path" # Adapted fom # http://code.activestate.com/recipes/52224-find-a-file-given-a-search-path/ for dir in path.split(os.pathsep): binpath = pjoin(dir, name) if os.path.exists(binpath): return os.path.abspath(binpath) return None def locate_cuda(): """Locate the CUDA environment on the system Returns a dict with keys 'home', 'nvcc', 'include', and 'lib64' and values giving the absolute path to each directory. Starts by looking for the CUDAHOME env variable. If not found, everything is based on finding 'nvcc' in the PATH. """ # first check if the CUDAHOME env variable is in use if 'CUDAHOME' in os.environ: home = os.environ['CUDAHOME'] nvcc = pjoin(home, 'bin', 'nvcc') else: # otherwise, search the PATH for NVCC default_path = pjoin(os.sep, 'usr', 'local', 'cuda', 'bin') nvcc = find_in_path('nvcc', os.environ['PATH'] + os.pathsep + default_path) if nvcc is None: raise EnvironmentError('The nvcc binary could not be ' 'located in your $PATH. Either add it to your path, or set $CUDAHOME') home = os.path.dirname(os.path.dirname(nvcc)) cudaconfig = {'home':home, 'nvcc':nvcc, 'include': pjoin(home, 'include'), 'lib64': pjoin(home, 'lib64')} for k, v in cudaconfig.items(): if not os.path.exists(v): raise EnvironmentError('The CUDA %s path could not be located in %s' % (k, v)) return cudaconfig CUDA = locate_cuda() try: numpy_include = np.get_include() except AttributeError: numpy_include = np.get_numpy_include() def customize_compiler_for_nvcc(self): """inject deep into distutils to customize how the dispatch to gcc/nvcc works. If you subclass UnixCCompiler, it's not trivial to get your subclass injected in, and still have the right customizations (i.e. distutils.sysconfig.customize_compiler) run on it. So instead of going the OO route, I have this. Note, it's kindof like a wierd functional subclassing going on.""" # tell the compiler it can processes .cu self.src_extensions.append('.cu') # save references to the default compiler_so and _comple methods default_compiler_so = self.compiler_so super = self._compile # now redefine the _compile method. This gets executed for each # object but distutils doesn't have the ability to change compilers # based on source extension: we add it. def _compile(obj, src, ext, cc_args, extra_postargs, pp_opts): if os.path.splitext(src)[1] == '.cu': # use the cuda for .cu files self.set_executable('compiler_so', CUDA['nvcc']) # use only a subset of the extra_postargs, which are 1-1 translated # from the extra_compile_args in the Extension class postargs = extra_postargs['nvcc'] else: postargs = extra_postargs['gcc'] super(obj, src, ext, cc_args, postargs, pp_opts) # reset the default compiler_so, which we might have changed for cuda self.compiler_so = default_compiler_so # inject our redefined _compile method into the class self._compile = _compile # run the customize_compiler class custom_build_ext(build_ext): def build_extensions(self): customize_compiler_for_nvcc(self.compiler) build_ext.build_extensions(self) ext_modules = [Extension('nms.gpu_nms', ['nms/nms_kernel.cu', 'nms/gpu_nms.pyx'], library_dirs=[CUDA['lib64']], libraries=['cudart'], language='c++', runtime_library_dirs=[CUDA['lib64']], # this syntax is specific to this build system # we're only going to use certain compiler args with nvcc and not with # gcc the implementation of this trick is in customize_compiler() below extra_compile_args={'gcc': ["-Wno-unused-function"], 'nvcc': ['-arch=sm_35', '--ptxas-options=-v', '-c', '--compiler-options', "'-fPIC'"]}, include_dirs = [numpy_include, CUDA['include']] )] setup( name='fast_rcnn', ext_modules=ext_modules, # inject our custom trigger cmdclass={'build_ext': custom_build_ext}, )
然后同上修改測(cè)試腳本,執(zhí)行測(cè)試腳本:
import numpy as np import time #from nms.nums_py2 import py_cpu_nms # for cpu from nms.gpu_nms import gpu_nms # for gpu np.random.seed( 1 ) # keep fixed num_rois = 6000 minxy = np.random.randint(50,145,size=(num_rois ,2)) maxxy = np.random.randint(150,200,size=(num_rois ,2)) score = 0.8*np.random.random_sample((num_rois ,1))+0.2 boxes_new = np.concatenate((minxy,maxxy,score), axis=1).astype(np.float32) def nms_test_time(boxes_new): thresh = [0.7,0.8,0.9] T = 50 for i in range(len(thresh)): since = time.time() for t in range(T): # keep = py_cpu_nms(boxes_new, thresh=thresh[i]) # for cpu keep = gpu_nms(boxes_new, thresh=thresh[i]) # for gpu print("thresh={:.1f}, time wastes:{:.4f}".format(thresh[i], (time.time()-since)/T)) return keep if __name__ =="__main__": nms_test_time(boxes_new)
結(jié)果:
thresh=0.7, time wastes:0.0120
thresh=0.8, time wastes:0.0063
thresh=0.9, time wastes:0.0071
發(fā)現(xiàn)比方法3還要慢一點(diǎn),應(yīng)該是計(jì)算量較小,而且時(shí)間損耗在調(diào)用GPU上吧。如果在Faster-RCNN中利方法4肯定是最快的,畢竟是rbg的實(shí)現(xiàn),暫時(shí)來看方法3也足夠了
到此這篇關(guān)于Python 非極大值抑制(NMS)的四種實(shí)現(xiàn)詳解的文章就介紹到這了,更多相關(guān)Python NMS 非極大值抑制內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Python實(shí)現(xiàn)將一個(gè)大文件按段落分隔為多個(gè)小文件的簡(jiǎn)單操作方法
這篇文章主要介紹了Python實(shí)現(xiàn)將一個(gè)大文件按段落分隔為多個(gè)小文件的簡(jiǎn)單操作方法,涉及Python針對(duì)文件的讀取、遍歷、轉(zhuǎn)換、寫入等相關(guān)操作技巧,需要的朋友可以參考下2017-04-04Python+Pillow+Pytesseract實(shí)現(xiàn)驗(yàn)證碼識(shí)別
這篇文章主要為大家詳細(xì)介紹了如何利用pillow和pytesseract來實(shí)現(xiàn)驗(yàn)證碼的識(shí)別,文中的示例代碼講解詳細(xì),感興趣的小伙伴可以了解一下2022-05-05Python中的MongoDB基本操作:連接、查詢實(shí)例
這篇文章主要介紹了Python中的MongoDB基本操作:連接、查詢實(shí)例,本文直接給出操作示例代碼,需要的朋友可以參考下2015-02-02Python實(shí)現(xiàn)生成簡(jiǎn)單的Makefile文件代碼示例
這篇文章主要介紹了Python實(shí)現(xiàn)生成簡(jiǎn)單的Makefile文件代碼示例,本文給出了兩段實(shí)現(xiàn)代碼,需要的朋友可以參考下2015-03-03基于Python實(shí)現(xiàn)n-gram文本生成的示例代碼
N-gram是自然語言處理中常用的技術(shù),它可以用于文本生成、語言模型訓(xùn)練等任務(wù),本文主要介紹了如何在Python中實(shí)現(xiàn)n-gram文本生成,需要的可以參考下2024-01-01jupyter notebook 中輸出pyecharts圖實(shí)例
這篇文章主要介紹了jupyter notebook 中輸出pyecharts圖實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來看看吧2019-06-06利用Python找出序列中出現(xiàn)最多的元素示例代碼
這篇文章主要給大家介紹了關(guān)于利用Python找出序列中出現(xiàn)最多的元素的相關(guān)資料,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧。2017-12-12Python中schedule模塊定時(shí)任務(wù)的使用方法(2)
這篇文章主要介紹了Python中schedule模塊定時(shí)任務(wù)的使用方法,文章基于上一篇文章的內(nèi)容展開的后續(xù),需要的朋友可以參考一下2022-05-05