基于python?win32setpixel?api?實(shí)現(xiàn)計(jì)算機(jī)圖形學(xué)相關(guān)操作(推薦)
最近讀研期間上了計(jì)算機(jī)可視化的課,老師也對(duì)計(jì)算機(jī)圖形學(xué)的實(shí)現(xiàn)布置了相關(guān)的作業(yè)。雖然我沒(méi)有系統(tǒng)地學(xué)過(guò)圖形可視化的課,但是我之前逆向過(guò)一些游戲引擎,除了保護(hù)驅(qū)動(dòng)之外,因?yàn)橐鐾敢?/s>,接觸過(guò)一些計(jì)算機(jī)圖形學(xué)的基礎(chǔ)常識(shí)。這次的作業(yè)主要分為2個(gè)主要模塊,一個(gè)是實(shí)現(xiàn)畫(huà)線,畫(huà)圓的算法,還有填充的算法,以及裁剪的算法。
之前工作的時(shí)候雖然參與過(guò)一些數(shù)據(jù)可視化大屏的設(shè)計(jì),但是當(dāng)時(shí)主要的工作使用Echarts或者G2做業(yè)務(wù)組件開(kāi)發(fā),并沒(méi)有對(duì)畫(huà)線,填充,裁剪等基礎(chǔ)算法做過(guò)實(shí)現(xiàn)。這次就著這個(gè)機(jī)會(huì)我就想了解一些。實(shí)現(xiàn)的效果如下(動(dòng)圖加載可能有些慢):
掃描線填充過(guò)程
裁剪過(guò)程(根據(jù)鼠標(biāo)位置,實(shí)時(shí)裁剪多邊形,右邊的藍(lán)色是裁剪后的圖形)
為什么選擇win32 api畫(huà)圖
選擇win32的原因是我想做一些與眾不同的實(shí)現(xiàn)方法,比起用D3或者Echarts這種webGL的實(shí)現(xiàn)方式,我更想直接在顯示器上畫(huà)出圖像,看起來(lái)更極客一些。這也導(dǎo)致了錄屏軟件沒(méi)辦法捕捉,只能用手機(jī)來(lái)錄制??
為什么不選C++而選擇python
主要是python能對(duì)內(nèi)存做個(gè)管理,C++直接調(diào)這種底層的接口會(huì)把內(nèi)存搞壞掉,導(dǎo)致電腦變得特別卡。。不信大家可以在電腦上編譯運(yùn)行這段代碼2分鐘試一試,如果你電腦沒(méi)炸,算你有錢(qián)。。
#include <windows.h> // g++ a.cpp -o a.exe -lgdi32 && a.exe void bresenham(int x0,int y0,int x1,int y1){ int dx = abs(x1-x0); int dy = abs(y1-y0); int sx = x0<x1 ? 1 : -1; int sy = y0<y1 ? 1 : -1; int err = dx-dy; int e2; while(1){ SetPixel(GetDC(0),x0,y0,RGB(255,0,0)); if(x0==x1 && y0==y1) break; e2 = 2*err; if(e2>-dy){ err = err-dy; x0 = x0+sx; } if(e2<dx){ err = err+dx; y0 = y0+sy; } } } void draw_polygon(int x[], int y[], int n) { int i; for (i = 0; i < n - 1; i++) bresenham(x[i], y[i], x[i + 1], y[i + 1]); bresenham(x[n - 1], y[n - 1], x[0], y[0]); } int main() { HDC hdc = GetDC(0); int x[4] = {100,200,300,100}; int y[4] = {100,100,200,200}; while (1) { draw_polygon(x,y,4); ReleaseDC(0, hdc); } return 0; }
畫(huà)線
對(duì)于畫(huà)線部分,我這里使用了一個(gè)叫bresenham算法。。雖然我念不出名字,但是這個(gè)算法能夠幫助我們實(shí)現(xiàn)畫(huà)線運(yùn)算,還有后面的中心圓填充,多邊形繪畫(huà)等方法。而且不通過(guò)浮點(diǎn)數(shù)的運(yùn)算,直接變成整數(shù)運(yùn)算,算法實(shí)現(xiàn)的函數(shù)如下所示,看起來(lái)比較簡(jiǎn)單,運(yùn)行速度也很快。
def bresenham(x0, y0, x1, y1 , color): dx = abs(x1 - x0) dy = abs(y1 - y0) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx - dy while True: win32gui.SetPixel(dc, x0, y0, color) if x0 == x1 and y0 == y1: break e2 = 2 * err if e2 > -dy: err -= dy x0 += sx if e2 < dx: err += dx y0 += sy
我的屏幕分辨率是1920x1080的,只要在電腦里調(diào)用這個(gè)函數(shù),把兩個(gè)點(diǎn)的坐標(biāo)填進(jìn)去,就可以在顯示器屏幕上畫(huà)一條線。
中心圓算法
這個(gè)中心圓算法相對(duì)來(lái)說(shuō)就比畫(huà)線的算法在理解上面難很多,但是實(shí)現(xiàn)起來(lái)更簡(jiǎn)單一些,分成8個(gè)關(guān)于直線的和坐標(biāo)軸對(duì)稱(chēng)的區(qū)域畫(huà)圓,因此知道一個(gè)就可以畫(huà)出其他幾個(gè),下面是實(shí)現(xiàn)過(guò)程。
def draw_circle(x, y, r): x0 = 0 y0 = r d = 3 - 2 * r while x0 <= y0: win32gui.SetPixel(dc, x + x0, y + y0, 0xffffff) win32gui.SetPixel(dc, x + y0, y + x0, 0xffffff) win32gui.SetPixel(dc, x - y0, y + x0, 0xffffff) win32gui.SetPixel(dc, x - x0, y + y0, 0xffffff) win32gui.SetPixel(dc, x - x0, y - y0, 0xffffff) win32gui.SetPixel(dc, x - y0, y - x0, 0xffffff) win32gui.SetPixel(dc, x + y0, y - x0, 0xffffff) win32gui.SetPixel(dc, x + x0, y - y0, 0xffffff) if d < 0: d += 4 * x0 + 6 else: d += 4 * (x0 - y0) + 10 y0 -= 1 x0 += 1
在中心圓填充這里,可以取個(gè)巧,把幾個(gè)頂點(diǎn)直接用畫(huà)線的算法一行一行填充上去。就可以實(shí)現(xiàn)下面的效果。代碼如下
# 畫(huà)實(shí)心圓 def draw_circle_fill(x0, y0, r): x = 0 y = r d = 3 - 2 * r while x <= y: time.sleep(0.01) bresenham(x0 + x, y0 + y, x0 - x, y0 + y) time.sleep(0.01) bresenham(x0 + x, y0 - y, x0 - x, y0 - y) time.sleep(0.01) bresenham(x0 + y, y0 + x, x0 - y, y0 + x) time.sleep(0.01) bresenham(x0 + y, y0 - x, x0 - y, y0 - x) if d < 0: d += 4 * x + 6 else: d += 4 * (x - y) + 10 y -= 1 x += 1
掃描線填充
掃描線填充的算法就比較難實(shí)現(xiàn)了,需要找到起始的種子,還有每行的種子,因?yàn)槲疫@里僅僅用頂點(diǎn)實(shí)現(xiàn)起來(lái)過(guò)于復(fù)雜,就索性偷懶用了數(shù)組。下面的算法實(shí)現(xiàn)部分僅供參考,具體的實(shí)現(xiàn)包括種子的選擇等等,可以更好一些。
maps = [[0 for x in range(0,400)] for x in range(0,400)] for i in range(200,300): maps[i][200] = 1 maps[200][i] = 1 maps[i][300] = 1 maps[300][i] = 1 for i in range(230,270): maps[i][230] = 1 maps[i][270] = 1 maps[230][i] = 1 maps[270][i] = 1 # 掃描填充maps def scan_fill(): seed = (271,296) stack = [] stack.append(seed) while len(stack) > 0: (x,y) = stack.pop() # 如果已經(jīng)被填充過(guò),則跳過(guò) if(maps[x][y] == 1): continue # 橫向填充并記錄lx rx i=0 time.sleep(0.01) while(maps[x+i][y] == 0): maps[x+i][y] = 1 win32gui.SetPixel(dc, x+i, y, 0xffffff) i += 1 rx = x+i-1 i=1 while(maps[x-i][y] == 0): maps[x-i][y] = 1 win32gui.SetPixel(dc, x-i, y, 0xffffff) i+=1 lx = x-i+1 # 下一個(gè)種子 if y+1>=300: continue i=0 while(maps[lx+i][y+1] == 0): if(maps[lx+i+1][y+1]==1): stack.append((lx+i,y+1)) break i+=1 i=0 while(maps[rx-i][y+1] == 0): if(maps[rx-i-1][y+1]==1): stack.append((rx-i,y+1)) break i+=1 if y-1<=0: continue i=0 while(maps[lx+i][y-1] == 0): if(maps[lx+i+1][y-1]==1): stack.append((lx+i,y-1)) break i+=1 i=0 while(maps[rx-i][y-1] == 0): if(maps[rx-i-1][y-1]==1): stack.append((rx-i,y-1)) break i+=1 scan_fill()
這里是所有代碼
上面的代碼都是剪切過(guò)的,完整的代碼如下所示,運(yùn)行后大家就可以在顯示器上看到運(yùn)行過(guò)程:
import time import win32gui dc = win32gui.GetDC(0) maps = [[0 for x in range(0,400)] for x in range(0,400)] for i in range(200,300): maps[i][200] = 1 maps[200][i] = 1 maps[i][300] = 1 maps[300][i] = 1 for i in range(230,270): maps[i][230] = 1 maps[i][270] = 1 maps[230][i] = 1 maps[270][i] = 1 # 中點(diǎn)算法畫(huà)圓 def draw_circle(x, y, r): x0 = 0 y0 = r d = 3 - 2 * r while x0 <= y0: time.sleep(0.01) win32gui.SetPixel(dc, x + x0, y + y0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x + y0, y + x0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x - y0, y + x0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x - x0, y + y0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x - x0, y - y0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x - y0, y - x0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x + y0, y - x0, 0xffffff) time.sleep(0.01) win32gui.SetPixel(dc, x + x0, y - y0, 0xffffff) if d < 0: d += 4 * x0 + 6 else: d += 4 * (x0 - y0) + 10 y0 -= 1 x0 += 1 # 畫(huà)線 def bresenham(x0, y0, x1, y1): dx = abs(x1 - x0) dy = abs(y1 - y0) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx - dy while True: #time.sleep(0.01) win32gui.SetPixel(dc, x0, y0, 0xffffff) if x0 == x1 and y0 == y1: break e2 = 2 * err if e2 > -dy: err -= dy x0 += sx if e2 < dx: err += dx y0 += sy # 畫(huà)實(shí)心圓 def draw_circle_fill(x0, y0, r): x = 0 y = r d = 3 - 2 * r while x <= y: time.sleep(0.01) bresenham(x0 + x, y0 + y, x0 - x, y0 + y) time.sleep(0.01) bresenham(x0 + x, y0 - y, x0 - x, y0 - y) time.sleep(0.01) bresenham(x0 + y, y0 + x, x0 - y, y0 + x) time.sleep(0.01) bresenham(x0 + y, y0 - x, x0 - y, y0 - x) if d < 0: d += 4 * x + 6 else: d += 4 * (x - y) + 10 y -= 1 x += 1 # 畫(huà)多邊形 def draw_polygon(points): for i in range(len(points)): x0 = points[i][0] y0 = points[i][1] x1 = points[(i + 1) % len(points)][0] y1 = points[(i + 1) % len(points)][1] bresenham(x0, y0, x1, y1) # 畫(huà)橢圓 def draw_ellipse(x0, y0, a, b): x = 0 y = b a2 = a * a b2 = b * b d = b2 - a2 * b + a2 / 4 while b2 * x <= a2 * y: win32gui.SetPixel(dc, x0 + x, y0 + y, 0xffffff) win32gui.SetPixel(dc, x0 - x, y0 + y, 0xffffff) win32gui.SetPixel(dc, x0 + x, y0 - y, 0xffffff) win32gui.SetPixel(dc, x0 - x, y0 - y, 0xffffff) if d < 0: d += b2 * (2 * x + 3) else: d += b2 * (2 * x - 2 * y + 5) y -= 1 x += 1 d1 = b2 * (x + 0.5) * (x + 0.5) + a2 * (y - 1) * (y - 1) - a2 * b2 while y >= 0: win32gui.SetPixel(dc, x0 + x, y0 + y, 0xffffff) win32gui.SetPixel(dc, x0 - x, y0 + y, 0xffffff) win32gui.SetPixel(dc, x0 + x, y0 - y, 0xffffff) win32gui.SetPixel(dc, x0 - x, y0 - y, 0xffffff) if d1 > 0: d1 -= a2 * (2 * y - 1) d1 += b2 * (2 * x + 3) x += 1 y -= 1 # 畫(huà)矩形 def draw_rectangle(x0, y0, x1, y1): bresenham(x0, y0, x1, y0) bresenham(x1, y0, x1, y1) bresenham(x1, y1, x0, y1) bresenham(x0, y1, x0, y0) # 掃描填充maps def scan_fill(): seed = (271,296) stack = [] stack.append(seed) while len(stack) > 0: (x,y) = stack.pop() # 如果已經(jīng)被填充過(guò),則跳過(guò) if(maps[x][y] == 1): continue # 橫向填充并記錄lx rx i=0 time.sleep(0.01) while(maps[x+i][y] == 0): maps[x+i][y] = 1 win32gui.SetPixel(dc, x+i, y, 0xffffff) i += 1 rx = x+i-1 i=1 while(maps[x-i][y] == 0): maps[x-i][y] = 1 win32gui.SetPixel(dc, x-i, y, 0xffffff) i+=1 lx = x-i+1 # 下一個(gè)種子 if y+1>=300: continue i=0 while(maps[lx+i][y+1] == 0): if(maps[lx+i+1][y+1]==1): stack.append((lx+i,y+1)) break i+=1 i=0 while(maps[rx-i][y+1] == 0): if(maps[rx-i-1][y+1]==1): stack.append((rx-i,y+1)) break i+=1 if y-1<=0: continue i=0 while(maps[lx+i][y-1] == 0): if(maps[lx+i+1][y-1]==1): stack.append((lx+i,y-1)) break i+=1 i=0 while(maps[rx-i][y-1] == 0): if(maps[rx-i-1][y-1]==1): stack.append((rx-i,y-1)) break i+=1 scan_fill() while True: # 畫(huà)線 bresenham(400, 900, 1000, 700) # 填充圓 draw_circle_fill(900, 500, 100) # 中心圓 draw_circle(1000, 200, 100) # 橢圓 draw_ellipse(1500, 200, 100, 100) # 矩形 draw_rectangle(1100, 400, 1200, 500) # 多邊形 draw_polygon([(900, 1000), (800, 800), (1000, 900), (1100, 1000)]) #三角形 draw_polygon([(400, 200), (500, 300), (600, 200)])
裁剪
裁剪這里簡(jiǎn)直就是我的噩夢(mèng),因?yàn)槲抑盀榱藰O客選擇了僅僅知道頂點(diǎn)就畫(huà)出裁剪過(guò)的多邊形,導(dǎo)致我沒(méi)有數(shù)組,只能設(shè)計(jì)更極客的算法。
最后我找到了一種裁剪凸多邊形的辦法,大致就是找到每個(gè)線段的交點(diǎn),然后順時(shí)針?lè)较驅(qū)稽c(diǎn)和在主多邊形,副多邊形的頂點(diǎn)排序,最后就可以實(shí)現(xiàn)裁剪。代碼超級(jí)復(fù)雜,
import win32gui import math import pygame dc = win32gui.GetDC(0) # 獲取鼠標(biāo)的位置 mouse_x=win32gui.GetCursorPos()[0] mouse_y=win32gui.GetCursorPos()[1] temp = win32gui.GetCursorPos() def get_mouse_pos(): global mouse_x, mouse_y mouse_x = win32gui.GetCursorPos()[0] mouse_y = win32gui.GetCursorPos()[1] clock = pygame.time.Clock() temp2 = [] def bresenham(x0, y0, x1, y1 , color): dx = abs(x1 - x0) dy = abs(y1 - y0) sx = 1 if x0 < x1 else -1 sy = 1 if y0 < y1 else -1 err = dx - dy while True: win32gui.SetPixel(dc, x0, y0, color) if x0 == x1 and y0 == y1: break e2 = 2 * err if e2 > -dy: err -= dy x0 += sx if e2 < dx: err += dx y0 += sy def draw_rectangle(x0, y0, x1, y1): bresenham(x0, y0, x1, y0,0xffffff) bresenham(x1, y0, x1, y1,0xffffff) bresenham(x1, y1, x0, y1,0xffffff) bresenham(x0, y1, x0, y0,0xffffff) def draw_polygon(points): for i in range(len(points)): x0 = points[i][0] y0 = points[i][1] x1 = points[(i + 1) % len(points)][0] y1 = points[(i + 1) % len(points)][1] bresenham(x0, y0, x1, y1,0x00ff00) def draw_polygon_black(points): for i in range(len(points)): x0 = points[i][0] y0 = points[i][1] x1 = points[(i + 1) % len(points)][0] y1 = points[(i + 1) % len(points)][1] bresenham(x0, y0, x1, y1,0x000000) # 線段是否相交 def IsRectCross(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y): return min(p1x,p2x) <= max(q1x,q2x) and min(q1x,q2x) <= max(p1x,p2x) and min(p1y,p2y) <= max(q1y,q2y) and min(q1y,q2y) <= max(p1y,p2y) def IsLineSegmentCross(pFirst1x,pFirst1y,pFirst2x,pFirst2y,pSecond1x,pSecond1y,pSecond2x,pSecond2y): line1 = pFirst1x * (pSecond1y - pFirst2y) + pFirst2x * (pFirst1y - pSecond1y) + pSecond1x * (pFirst2y - pFirst1y) line2 = pFirst1x * (pSecond2y - pFirst2y) + pFirst2x * (pFirst1y - pSecond2y) + pSecond2x * (pFirst2y - pFirst1y) if (((line1 ^ line2) >= 0) and not (line1 == 0 and line2 == 0)): return False line1 = pSecond1x * (pFirst1y - pSecond2y) + pSecond2x * (pSecond1y - pFirst1y) + pFirst1x * (pSecond2y - pSecond1y) line2 = pSecond1x * (pFirst2y - pSecond2y) + pSecond2x * (pSecond1y - pFirst2y) + pFirst2x * (pSecond2y - pSecond1y) if (((line1 ^ line2) >= 0) and not (line1 == 0 and line2 == 0)): return False return True def GetCrossPoint(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y): if(IsRectCross(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y)): if (IsLineSegmentCross(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y)): tmpLeft = (q2x - q1x) * (p1y - p2y) - (p2x - p1x) * (q1y - q2y) tmpRight = (p1y - q1y) * (p2x - p1x) * (q2x - q1x) + q1x * (q2y - q1y) * (p2x - p1x) - p1x * (p2y - p1y) * (q2x - q1x) if (tmpLeft == 0): return None x = (int)(tmpRight/tmpLeft) tmpLeft = (p1x - p2x) * (q2y - q1y) - (p2y - p1y) * (q1x - q2x) tmpRight = p2y * (p1x - p2x) * (q2y - q1y) + (q2x- p2x) * (q2y - q1y) * (p1y - p2y) - q2y * (q1x - q2x) * (p2y - p1y) if (tmpLeft == 0): return None y = (int)(tmpRight/tmpLeft) return (x,y) else: return None else: return None def draw_rectangle_black(x0, y0, x1, y1): bresenham(x0, y0, x1, y0,0x000000) bresenham(x1, y0, x1, y1,0x000000) bresenham(x1, y1, x0, y1,0x000000) bresenham(x0, y1, x0, y0,0x000000) # 判斷點(diǎn)是否在多邊形內(nèi) def IsPointInPolygon(points, x, y): nCross = 0 for i in range(len(points)): p1x = points[i][0] p1y = points[i][1] p2x = points[(i + 1) % len(points)][0] p2y = points[(i + 1) % len(points)][1] if (y > min(p1y, p2y)): if (y <= max(p1y, p2y)): if (x <= max(p1x, p2x)): if (p1y != p2y): xinters = (y - p1y) * (p2x - p1x) / (p2y - p1y) + p1x if (p1x == p2x or x <= xinters): nCross += 1 if (nCross % 2 == 0): return False else: return True def getNonRepeatList(data): new_data = [] for i in range(len(data)): if data[i] not in new_data: new_data.append(data[i]) return new_data # 判斷兩多邊形重疊部分 返回一個(gè)多邊形 def IsPolygonCross(points1, points2): result = [] for i in range(len(points1)): p1x = points1[i][0] p1y = points1[i][1] p2x = points1[(i + 1) % len(points1)][0] p2y = points1[(i + 1) % len(points1)][1] for j in range(len(points2)): q1x = points2[j][0] q1y = points2[j][1] q2x = points2[(j + 1) % len(points2)][0] q2y = points2[(j + 1) % len(points2)][1] if (IsPointInPolygon(points1, q1x, q1y) and (q1x, q1y) not in result): result.append((q1x, q1y)) if (IsPointInPolygon(points1, q2x, q2y) and (q2x, q2y) not in result): result.append((q2x, q2y)) if (IsPointInPolygon(points2, p1x, p1y) and (p1x, p1y) not in result): result.append((p1x, p1y)) if (IsPointInPolygon(points2, p2x, p2y) and (p2x, p2y) not in result): result.append((p2x, p2y)) if (IsRectCross(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y)): if GetCrossPoint(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y) != None: (x, y) = GetCrossPoint(p1x, p1y, p2x, p2y, q1x, q1y, q2x, q2y) result.append((x, y)) if (result == []): return result return (sort_points_in_clockwise_order(result)) w = 60 h = 100 def draw_polygon_red(points): for i in range(len(points)): x0 = points[i][0] y0 = points[i][1] x1 = points[(i + 1) % len(points)][0] y1 = points[(i + 1) % len(points)][1] bresenham(x0, y0, x1, y1,0xff0000) def sort_points_in_clockwise_order(points): center = (0, 0) for point in points: center = (center[0] + point[0], center[1] + point[1]) center = (center[0] / len(points), center[1] / len(points)) points_copy = list(points) points_copy.sort(key=lambda point: math.atan2(point[0] - center[0], point[1] - center[1])) res = [] for i in points_copy: res.append((i[0]+500,i[1])) return res polygon_Points = [(600,500), (800,500), (900, 600), (900, 400),(600,300)] while True: draw_rectangle_black(temp[0],temp[1],temp[0]+w,temp[1]+h) draw_rectangle(mouse_x,mouse_y,mouse_x+w,mouse_y+h) temp = (mouse_x,mouse_y) get_mouse_pos() draw_polygon(polygon_Points) res = IsPolygonCross(polygon_Points,[(mouse_x,mouse_y),(mouse_x+w,mouse_y),(mouse_x+w,mouse_y+h),(mouse_x,mouse_y+h)]) print(res) if temp2 != []: draw_polygon_black(temp2) if res != [] and res != None: draw_polygon_red(res) temp2 = res clock.tick(120)# 60幀
總結(jié)
計(jì)算機(jī)圖形學(xué)并沒(méi)有我之前想的那么好學(xué),踩了很多坑,也補(bǔ)了很多知識(shí)。希望后面能再接再厲
到此這篇關(guān)于基于python?win32setpixel?api?實(shí)現(xiàn)計(jì)算機(jī)圖形學(xué)相關(guān)操作的文章就介紹到這了,更多相關(guān)python計(jì)算機(jī)圖形學(xué)內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
Django利用AJAX技術(shù)實(shí)現(xiàn)博文實(shí)時(shí)搜索
這篇文章主要介紹了Django如何利用AJAX技術(shù)實(shí)現(xiàn)博文實(shí)時(shí)搜索,幫助大家更好的理解和學(xué)習(xí)使用Django框架,感興趣的朋友可以了解下2021-05-05Caffe卷積神經(jīng)網(wǎng)絡(luò)solver及其配置詳解
這篇文章主要為大家介紹了Caffe卷積神經(jīng)網(wǎng)絡(luò)solver及其配置詳解,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2022-06-06python機(jī)器學(xué)習(xí)實(shí)戰(zhàn)之樹(shù)回歸詳解
這篇文章主要為大家詳細(xì)介紹了python機(jī)器學(xué)習(xí)實(shí)戰(zhàn)之樹(shù)回歸的相關(guān)代碼,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-12-12python3安裝OCR識(shí)別庫(kù)tesserocr過(guò)程圖解
這篇文章主要介紹了python3安裝OCR識(shí)別庫(kù)tesserocr過(guò)程圖解,文中通過(guò)示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友可以參考下2020-04-04python3 http提交json參數(shù)并獲取返回值的方法
今天小編就為大家分享一篇python3 http提交json參數(shù)并獲取返回值的方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-12-12一步一步教你用Python?pyglet仿制鴻蒙系統(tǒng)里的時(shí)鐘
pyglet是一個(gè)面向Python的跨平臺(tái)窗口、多媒體庫(kù),它可以用于創(chuàng)建游戲和多媒體應(yīng)用程序,下面這篇文章主要給大家介紹了關(guān)于如何一步一步教你用Python?pyglet仿制鴻蒙系統(tǒng)里的時(shí)鐘,需要的朋友可以參考下2024-03-03python3+requests接口自動(dòng)化session操作方法
今天小編就為大家分享一篇python3+requests接口自動(dòng)化session操作方法,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過(guò)來(lái)看看吧2018-10-10