pandas如何使用列表和字典創(chuàng)建?Series
前言:
Pandas
納入了大量庫和一些標(biāo)準(zhǔn)的數(shù)據(jù)模型,提供了高效地操作大型數(shù)據(jù)集所需的工具。pandas
提供了大量能使我們快速便捷地處理數(shù)據(jù)的函數(shù)和方法。
為了讓大家對pandas
的操作更加熟練,我整理了一些關(guān)于pandas
的小操作,會依次為大家展示
今天我將先為大家如何關(guān)于pandas
如何使用列表和字典創(chuàng)建 Series
。
01 使用列表創(chuàng)建 Series
import pandas as pd ser1 = pd.Series([1.5, 2.5, 3, 4.5, 5.0, 6]) print(ser1)
Output:
0??? 1.5
1??? 2.5
2??? 3.0
3??? 4.5
4??? 5.0
5??? 6.0
dtype: float64
02 使用 name 參數(shù)創(chuàng)建 Series
import pandas as pd ser2 = pd.Series(["India", "Canada", "Germany"], name="Countries") print(ser2)
Output:
0????? India
1???? Canada
2??? Germany
Name: Countries, dtype: object
03 使用簡寫的列表創(chuàng)建 Series
import pandas as pd ser3 = pd.Series(["A"]*4) print(ser3)
Output:
0??? A
1??? A
2??? A
3??? A
dtype: object
04 使用字典創(chuàng)建 Series
import pandas as pd ser4 = pd.Series({"India": "New Delhi", "Japan": "Tokyo", "UK": "London"}) print(ser4)
Output:
India??? New Delhi
Japan??????? Tokyo
UK????????? London
dtype: object
05 如何使用 Numpy 函數(shù)創(chuàng)建 Series
import pandas as pd import numpy as np ser1 = pd.Series(np.linspace(1, 10, 5)) print(ser1) ser2 = pd.Series(np.random.normal(size=5)) print(ser2)
Output:
0???? 1.00
1???? 3.25
2???? 5.50
3???? 7.75
4??? 10.00
dtype: float64
0?? -1.694452
1?? -1.570006
2??? 1.713794
3??? 0.338292
4??? 0.803511
dtype: float64
06 如何獲取 Series 的索引和值
import pandas as pd import numpy as np ser1 = pd.Series({"India": "New Delhi", "Japan": "Tokyo", "UK": "London"}) print(ser1.values) print(ser1.index) print("\n") ser2 = pd.Series(np.random.normal(size=5)) print(ser2.index) print(ser2.values)
Output:
['New Delhi' 'Tokyo' 'London']
Index(['India', 'Japan', 'UK'], dtype='object')
?
?
RangeIndex(start=0, stop=5, step=1)
[ 0.66265478 -0.72222211? 0.3608642?? 1.40955436? 1.3096732 ]
07 如何在創(chuàng)建 Series 時指定索引
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print(ser1)
Output:
IND??????? India
CAN?????? Canada
AUS??? Australia
JAP??????? Japan
GER????? Germany
FRA?????? France
dtype: object
08?如何獲取 Series 的大小和形狀
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print(len(ser1)) print(ser1.shape) print(ser1.size)
Output:
6
(6,)
6
09 如何獲取 Series 開始或末尾幾行數(shù)據(jù)
Head()函數(shù):
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Head()-----") print(ser1.head()) print("\n\n-----Head(2)-----") print(ser1.head(2))
Output:
-----Head()-----
IND??????? India
CAN?????? Canada
AUS??? Australia
JAP??????? Japan
GER????? Germany
dtype: object
?
?
-----Head(2)-----
IND???? India
CAN??? Canada
dtype: object
Tail()函數(shù):
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Tail()-----") print(ser1.tail()) print("\n\n-----Tail(2)-----") print(ser1.tail(2))
Output:
-----Tail()-----
CAN?????? Canada
AUS??? Australia
JAP??????? Japan
GER????? Germany
FRA?????? France
dtype: object
?
?
-----Tail(2)-----
GER??? Germany
FRA???? France
dtype: object
Take()函數(shù):
import pandas as pd values = ["India", "Canada", "Australia", "Japan", "Germany", "France"] code = ["IND", "CAN", "AUS", "JAP", "GER", "FRA"] ser1 = pd.Series(values, index=code) print("-----Take()-----") print(ser1.take([2, 4, 5]))
Output:
-----Take()-----
AUS??? Australia
GER????? Germany
FRA?????? France
dtype: object
10 使用切片獲取 Series 子集
import pandas as pd num = [000, 100, 200, 300, 400, 500, 600, 700, 800, 900] idx = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J'] series = pd.Series(num, index=idx) print("\n [2:2] \n") print(series[2:4]) print("\n [1:6:2] \n") print(series[1:6:2]) print("\n [:6] \n") print(series[:6]) print("\n [4:] \n") print(series[4:]) print("\n [:4:2] \n") print(series[:4:2]) print("\n [4::2] \n") print(series[4::2]) print("\n [::-1] \n") print(series[::-1])
Output:
?[2:2]
?
C??? 200
D??? 300
dtype: int64
?
?[1:6:2]
?
B??? 100
D??? 300
F??? 500
dtype: int64
?
?[:6]
?
A????? 0
B??? 100
C??? 200
D??? 300
E??? 400
F??? 500
dtype: int64
?
?[4:]
?
E??? 400
F??? 500
G??? 600
H??? 700
I??? 800
J??? 900
dtype: int64
?
?[:4:2]
?
A????? 0
C??? 200
dtype: int64
?
?[4::2]
?
E??? 400
G??? 600
I??? 800
dtype: int64
?
?[::-1]
?
J??? 900
I??? 800
H??? 700
G??? 600
F??? 500
E??? 400
D??? 300
C??? 200
B??? 100
A????? 0
dtype: int64
到此這篇關(guān)于pandas如何使用列表和字典創(chuàng)建 Series的文章就介紹到這了,更多相關(guān)pandas使用列表和字典創(chuàng)建 Series內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
- NumPy.npy與pandas DataFrame的實例講解
- 詳解將Pandas中的DataFrame類型轉(zhuǎn)換成Numpy中array類型的三種方法
- Pandas把dataframe或series轉(zhuǎn)換成list的方法
- 教你漂亮打印Pandas DataFrames和Series
- Pandas數(shù)據(jù)結(jié)構(gòu)詳細(xì)說明及如何創(chuàng)建Series,DataFrame對象方法
- 使用python計算方差方式——pandas.series.std()
- pandas基礎(chǔ)?Series與Dataframe與numpy對二進制文件輸入輸出
相關(guān)文章
解決Python出現(xiàn)_warn_unsafe_extraction問題的方法
這篇文章主要為大家詳細(xì)介紹了解決Python出現(xiàn)'_warn_unsafe_extraction'問題的方法,感興趣的小伙伴們可以參考一下2016-03-03python利用tkinter實現(xiàn)圖片格式轉(zhuǎn)換的示例
這篇文章主要介紹了python利用tkinter實現(xiàn)圖片格式轉(zhuǎn)換,幫助大家更好的理解和使用python,感興趣的朋友可以了解下2020-09-09