OpenCV-Python圖像輪廓之輪廓特征詳解
前言
圖像輪廓是指由位于邊緣、連續(xù)的、具有相同顏色和強(qiáng)度的點(diǎn)構(gòu)成的曲線,它可以用于形狀分析以及對(duì)象檢測(cè)和識(shí)別。
一、輪廓的矩
輪廓的矩包含了輪廓的各種幾何特征,如面積、位置、角度、形狀等。cv2.moments()函數(shù)用于返回輪廓的矩,其基本格式如下:
ret = cv2.moments(array[, binaryImage]) ret為返回的輪廓的矩,是一個(gè)字典對(duì)象, 大多數(shù)矩的含義比較抽象, 但其中的零階矩(m00)表示輪廓的面積 array為表示輪廓的數(shù)組 binaryImage值為True時(shí),會(huì)將array對(duì)象中的所有非0值設(shè)置為1
import cv2 import numpy as np import matplotlib.pyplot as plt img = cv2.imread('shape2.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1,(0,255,0),2) cv2.imshow('Contours',img1) m0 = cv2.moments(contours[0]) m1 = cv2.moments(contours[1]) print('輪廓0的矩:', m0) print('輪廓1的矩:', m1) print('輪廓0的面積:', m0['m00']) print('輪廓1的面積:', m1['m00']) cv2.waitKey(0) cv2.destroyAllWindows()
二、輪廓的面積
cv2.contourArea()函數(shù)用于返回輪廓的面積,其基本格式如下:
ret = cv2.contourArea(contour[, oriented]) ret為返回的面積 contour為輪廓 oriented為可選參數(shù), 其參數(shù)值為True時(shí), 返回值的正與負(fù)表示表示輪廓是順時(shí)針還是逆時(shí)針, 參數(shù)值為False(默認(rèn)值)時(shí), 函數(shù)返回值為絕對(duì)值
img = cv2.imread('shape2.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) m0 = cv2.contourArea(contours[0]) m1 = cv2.contourArea(contours[1]) print('輪廓0的面積:', m0) print('輪廓1的面積:', m1)
三、輪廓的長(zhǎng)度
cv2.arcLength()函數(shù)用于返回輪廓的長(zhǎng)度,其基本格式如下:
ret = cv2.cv2.arcLength(contour, closed) ret為返回的長(zhǎng)度 contour為輪廓 closed為布爾值, 為True時(shí)表示輪廓是封閉的
img = cv2.imread('shape2.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) m0 = cv2.arcLength(contours[0], True) m1 = cv2.arcLength(contours[1], True) print('輪廓0的長(zhǎng)度:', m0) print('輪廓1的長(zhǎng)度:', m1)
四、輪廓的近似多邊形
cv2.approxPolyDP()函數(shù)用于返回輪廓的近似多邊形,其基本格式如下:
ret = cv2.cv2.arcLength(contour, epsilon, closed) ret為返回的近似多邊形 contour為輪廓 epsilon為精度, 表示近似多邊形接近輪廓的最大距離 closed為布爾值, 為True時(shí)表示輪廓是封閉的
img = cv2.imread('shape3.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) arcl = cv2.arcLength(contours[0], True) img2 = img1.copy() app = cv2.approxPolyDP(contours[0], arcl*0.05, True) img2 = cv2.drawContours(img2, [app], -1, (255,0,0), 2) cv2.imshow('contours',img2) cv2.waitKey(0) cv2.destroyAllWindows()
五、輪廓的凸包
cv2.convexHull()函數(shù)用于返回輪廓的凸包,其基本格式如下:
hull = cv2.convexHull(contours[, clockwise[, returnPointss]]) hull為返回的凸包, 是一個(gè)numpy.ndarray對(duì)象, 包含了凸包的關(guān)鍵點(diǎn) contours為輪廓 clockwise為方向標(biāo)記, 為True時(shí), 凸包為順時(shí)針方向, 為False(默認(rèn)值)時(shí), 凸包為逆時(shí)針方向 returnPointss為True時(shí)(默認(rèn)值)時(shí), 返回的hull中包含的是凸包關(guān)鍵點(diǎn)的坐標(biāo), 為False時(shí), 返回的是凸包關(guān)鍵點(diǎn)在輪廓中的索引
img = cv2.imread('shape3.jpg') img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) hull = cv2.convexHull(contours[0]) print('returnPoints = Treu 時(shí)返回的凸包;\n',hull) hull2 = cv2.convexHull(contours[0], returnPoints=False) print('returnPoints = False時(shí)返回的凸包;\n',hull2) cv2.polylines(img1, [hull], True, (255,0,0),2) cv2.imshow('ConvecHull',img1) cv2.waitKey(0) cv2.destroyAllWindows()
六、輪廓的直邊界矩形
輪廓的直邊界矩形是指可容納輪廓的矩形,且矩形的兩條邊必須是平行的,直邊界矩形不一定是面積最小的邊界矩形。
cv2.boundingRect()函數(shù)用于返回輪廓的直邊界矩形,其基本格式如下:
ret = cv2.boundingRect(contours) ret為返回的直邊界矩形, 它是一個(gè)四元組, 其格式為(矩形左上角x坐標(biāo), 矩形左上角y坐標(biāo), 矩形的寬度, 矩形的高度) contours為用于計(jì)算直邊界矩形的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 img1 = cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) ret = cv2.boundingRect(contours[0]) print('直邊界矩形:\n', ret) pt1 = (ret[0], ret[1]) pt2 = (ret[0] + ret[2], ret[1] + ret[3]) img2 = img1.copy() img2 = cv2.rectangle(img2, pt1, pt2, (255,0,0), 1) cv2.imshow('Rectangle', img2) cv2.waitKey(0) cv2.destroyAllWindows()
七、輪廓的旋轉(zhuǎn)矩形
輪廓的旋轉(zhuǎn)矩形是指可容納輪廓的面積最小的矩形。
cv2.minAreaRect()函數(shù)用于返回輪廓的旋轉(zhuǎn)矩形,其基本格式如下:
box = cv2.minAreaRect(contour) box為返回的旋轉(zhuǎn)矩陣, 它是一個(gè)三元組, 其格式為((矩形中心點(diǎn)x坐標(biāo), 矩形中心點(diǎn)y坐標(biāo)), (矩形的寬度, 矩形的高度), 矩形的旋轉(zhuǎn)角度) contour為用于計(jì)算矩形的輪廓
cv2.minAreaRect()函數(shù)返回的結(jié)果不能直接用于繪制旋轉(zhuǎn)矩形,可以使用cv2.boxPoints()函數(shù)將其轉(zhuǎn)換為矩形的頂點(diǎn)坐標(biāo),其基本格式如下:
points = cv2.boxPoints(box) points為返回的矩形頂點(diǎn)坐標(biāo), 坐標(biāo)數(shù)據(jù)為浮點(diǎn)數(shù) box為cv2.minAreaRect()函數(shù)返回的矩形數(shù)據(jù)
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計(jì)算最小旋轉(zhuǎn)矩形 ret = cv2.minAreaRect(contours[0]) rect = cv2.boxPoints(ret) rect = np.int0(rect) img2 = img1.copy() cv2.drawContours(img2, [rect], 0, (255,0,0), 2) cv2.imshow('Rectangle', img2) cv2.waitKey(0) cv2.destroyAllWindows()
八、輪廓的最小外包圓
cv2.minEnclosingCircle()函數(shù)用于返回可容納輪廓的最小外包圓,其基本格式如下:
center, radius = cv2.minEnclosingCircle(contours) center為圓心 radius為半徑 contours為用于計(jì)算最小外包圓的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計(jì)算最小外包圓 (x, y), radius = cv2.minEnclosingCircle(contours[0]) center = (int(x),int(y)) radius = int(radius) img2 = img1.copy() cv2.circle(img2, center, radius, (255,0,0),2) cv2.imshow('Circle',img2) cv2.waitKey(0) cv2.destroyAllWindows()
九、輪廓的擬合橢圓
cv2.fitEllipse()函數(shù)用于返回輪廓的擬合橢圓,其基本格式如下:
ellipse = cv2.fitEllipse(contours) ellipse為返回的橢圓 contours為用于計(jì)算擬合橢圓的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計(jì)算擬合橢圓 ellipse = cv2.fitEllipse(contours[0]) img2 = img1.copy() cv2.ellipse(img2, ellipse, (255,0,0),2) cv2.imshow('Circle',img2) cv2.waitKey(0) cv2.destroyAllWindows()
十、輪廓的擬合直線
cv2.fitLine()函數(shù)用于返回輪廓的擬合直線,其基本格式如下:
line = cv2.fitLine(contours, distType, param, reps, aeps) line為返回的擬合直線 contours為用于計(jì)算擬合直線的輪廓 distType為距離參數(shù)類型, 決定如何計(jì)算擬合直線 param為距離參數(shù), 與距離參數(shù)類型有關(guān), 其設(shè)置為0時(shí), 函數(shù)將自動(dòng)選擇最優(yōu)值 reps為計(jì)算擬合直線需要的徑向精度, 通常設(shè)置為0.01 aeps為計(jì)算擬合直線需要的軸向精度, 通常設(shè)置為0.01
param距離參數(shù)類型:
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255), 2) cv2.imshow('Contours',img1) #計(jì)算擬合直線 img2 = img1.copy() rows, cols = img.shape[:2] [vx, vy, x, y] = cv2.fitLine(contours[0], cv2.DIST_L1, 0, 0.01, 0.01) lefty = int((-x * vy / vx) + y) righty = int(((cols - x) * vy / vx) + y) cv2.line(img2, (0, lefty), (cols-1, righty), (255,0,0), 2) cv2.imshow('FitLine',img2) cv2.waitKey(0) cv2.destroyAllWindows()
十一、輪廓的最小外包三角形
cv2.minEnclosingTriangle()函數(shù)用于返回可容納輪廓的最小外包三角形,其基本格式如下:
retval, triangle = cv2.minEnclosingTriangle(contours) retval為最小外包三角形的面積 triangle為最小外包三角形 contours為用于計(jì)算最小外包三角形的輪廓
img = cv2.imread('shape4.jpg') cv2.imshow('original', img) img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(img_gray, 125, 255, cv2.THRESH_BINARY) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) img1 = np.zeros(img.shape, np.uint8) + 255 cv2.drawContours(img1, contours, -1, (0,0,255) ,2) cv2.imshow('Contours',img1) # 計(jì)算最小外包三角形 retval, triangle = cv2.minEnclosingTriangle(contours[0]) triangle = np.int0(triangle) img2 = img1.copy() cv2.polylines(img2, [triangle], True, (255,0,0),2) cv2.imshow('Triangle',img2) cv2.waitKey(0) cv2.destroyAllWindows()
以上就是OpenCV-Python圖像輪廓之輪廓特征詳解的詳細(xì)內(nèi)容,更多關(guān)于OpenCV-Python輪廓特征的資料請(qǐng)關(guān)注腳本之家其它相關(guān)文章!
相關(guān)文章
pandas數(shù)據(jù)清洗(缺失值和重復(fù)值的處理)
這篇文章主要介紹了pandas數(shù)據(jù)清洗(缺失值和重復(fù)值的處理),pandas對(duì)大數(shù)據(jù)有很多便捷的清洗用法,尤其針對(duì)缺失值和重復(fù)值,詳細(xì)介紹感興趣的小伙伴可以參考下面文章內(nèi)容2022-08-08Pandas?DataFrame.drop()刪除數(shù)據(jù)的方法實(shí)例
pandas作為數(shù)據(jù)分析強(qiáng)大的庫(kù),是基于numpy數(shù)組構(gòu)建的,專門用來(lái)處理表格和混雜的數(shù)據(jù),下面這篇文章主要給大家介紹了關(guān)于Pandas?DataFrame.drop()刪除數(shù)據(jù)的相關(guān)資料,需要的朋友可以參考下2022-07-07Python線程之同步機(jī)制實(shí)際應(yīng)用場(chǎng)景舉例說(shuō)明
這篇文章主要給大家分享的是Python線程之同步機(jī)制實(shí)際應(yīng)用場(chǎng)景舉例說(shuō)明,銀行轉(zhuǎn)賬小栗子供大家參考學(xué)習(xí),希望對(duì)你有一定的幫助2022-02-02Python在OpenCV里實(shí)現(xiàn)極坐標(biāo)變換功能
這篇文章主要介紹了在OpenCV里實(shí)現(xiàn)極坐標(biāo)變換功能,本文通過(guò)實(shí)例代碼給大家介紹的非常詳細(xì),具有一定的參考借鑒價(jià)值,需要的朋友可以參考下2019-09-09