opencv+mediapipe實現(xiàn)人臉檢測及攝像頭實時示例
單張人臉關鍵點檢測
定義可視化圖像函數(shù)
導入三維人臉關鍵點檢測模型
導入可視化函數(shù)和可視化樣式
讀取圖像
將圖像模型輸入,獲取預測結(jié)果
BGR轉(zhuǎn)RGB
將RGB圖像輸入模型,獲取預測結(jié)果
預測人人臉個數(shù)
可視化人臉關鍵點檢測效果
繪制人來臉和重點區(qū)域輪廓線,返回annotated_image
繪制人臉輪廓、眼睫毛、眼眶、嘴唇
在三維坐標中分別可視化人臉網(wǎng)格、輪廓、瞳孔
import cv2 as cv
import mediapipe as mp
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 定義可視化圖像函數(shù)
def look_img(img):
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
plt.imshow(img_RGB)
plt.show()
# 導入三維人臉關鍵點檢測模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=True,#TRUE:靜態(tài)圖片/False:攝像頭實時讀取
refine_landmarks=True,#使用Attention Mesh模型
min_detection_confidence=0.5, #置信度閾值,越接近1越準
min_tracking_confidence=0.5,#追蹤閾值
)
# 導入可視化函數(shù)和可視化樣式
mp_drawing=mp.solutions.drawing_utils
mp_drawing_styles=mp.solutions.drawing_styles
# 讀取圖像
img=cv.imread('img.png')
# look_img(img)
# 將圖像模型輸入,獲取預測結(jié)果
# BGR轉(zhuǎn)RGB
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
# 將RGB圖像輸入模型,獲取預測結(jié)果
results=model.process(img_RGB)
# 預測人人臉個數(shù)
len(results.multi_face_landmarks)
print(len(results.multi_face_landmarks))
# 結(jié)果:1
# 可視化人臉關鍵點檢測效果
# 繪制人來臉和重點區(qū)域輪廓線,返回annotated_image
annotated_image=img.copy()
if results.multi_face_landmarks: #如果檢測出人臉
for face_landmarks in results.multi_face_landmarks:#遍歷每一張臉
#繪制人臉網(wǎng)格
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
#landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
#繪制人臉輪廓、眼睫毛、眼眶、嘴唇
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
# landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
#繪制瞳孔區(qū)域
mp_drawing.draw_landmarks(
image=annotated_image,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
# landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[128,256,229]),
# landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
cv.imwrite('test.jpg',annotated_image)
look_img(annotated_image)
# 在三維坐標中分別可視化人臉網(wǎng)格、輪廓、瞳孔
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_CONTOURS)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_IRISES)



單張圖像人臉檢測
可以通過調(diào)用open3d實現(xiàn)3d模型建立,部分代碼與上面類似
import cv2 as cv
import mediapipe as mp
import numpy as np
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 定義可視化圖像函數(shù)
def look_img(img):
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
plt.imshow(img_RGB)
plt.show()
# 導入三維人臉關鍵點檢測模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=True,#TRUE:靜態(tài)圖片/False:攝像頭實時讀取
refine_landmarks=True,#使用Attention Mesh模型
max_num_faces=40,
min_detection_confidence=0.2, #置信度閾值,越接近1越準
min_tracking_confidence=0.5,#追蹤閾值
)
# 導入可視化函數(shù)和可視化樣式
mp_drawing=mp.solutions.drawing_utils
# mp_drawing_styles=mp.solutions.drawing_styles
draw_spec=mp_drawing.DrawingSpec(thickness=2,circle_radius=1,color=[223,155,6])
# 讀取圖像
img=cv.imread('../人臉三維關鍵點檢測/dkx.jpg')
# width=img1.shape[1]
# height=img1.shape[0]
# img=cv.resize(img1,(width*10,height*10))
# look_img(img)
# 將圖像模型輸入,獲取預測結(jié)果
# BGR轉(zhuǎn)RGB
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
# 將RGB圖像輸入模型,獲取預測結(jié)果
results=model.process(img_RGB)
# # 預測人人臉個數(shù)
# len(results.multi_face_landmarks)
#
# print(len(results.multi_face_landmarks))
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
landmark_drawing_spec=draw_spec,
connection_drawing_spec=draw_spec
)
else:
print('未檢測出人臉')
look_img(img)
mp_drawing.plot_landmarks(results.multi_face_landmarks[0],mp_face_mesh.FACEMESH_TESSELATION)
mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_CONTOURS)
mp_drawing.plot_landmarks(results.multi_face_landmarks[1],mp_face_mesh.FACEMESH_IRISES)
# 交互式三維可視化
coords=np.array(results.multi_face_landmarks[0].landmark)
# print(len(coords))
# print(coords)
def get_x(each):
return each.x
def get_y(each):
return each.y
def get_z(each):
return each.z
# 分別獲取所有關鍵點的XYZ坐標
points_x=np.array(list(map(get_x,coords)))
points_y=np.array(list(map(get_y,coords)))
points_z=np.array(list(map(get_z,coords)))
# 將三個方向的坐標合并
points=np.vstack((points_x,points_y,points_z)).T
print(points.shape)
import open3d
point_cloud=open3d.geometry.PointCloud()
point_cloud.points=open3d.utility.Vector3dVector(points)
open3d.visualization.draw_geometries([point_cloud])

這是建立的3d的可視化模型,可以通過鼠標拖動將其旋轉(zhuǎn)
攝像頭實時關鍵點檢測
定義可視化圖像函數(shù)
導入三維人臉關鍵點檢測模型
導入可視化函數(shù)和可視化樣式
讀取單幀函數(shù)
主要代碼和上面的圖像類似
import cv2 as cv
import mediapipe as mp
from tqdm import tqdm
import time
import matplotlib.pyplot as plt
# 導入三維人臉關鍵點檢測模型
mp_face_mesh=mp.solutions.face_mesh
# help(mp_face_mesh.FaceMesh)
model=mp_face_mesh.FaceMesh(
static_image_mode=False,#TRUE:靜態(tài)圖片/False:攝像頭實時讀取
refine_landmarks=True,#使用Attention Mesh模型
max_num_faces=5,#最多檢測幾張人臉
min_detection_confidence=0.5, #置信度閾值,越接近1越準
min_tracking_confidence=0.5,#追蹤閾值
)
# 導入可視化函數(shù)和可視化樣式
mp_drawing=mp.solutions.drawing_utils
mp_drawing_styles=mp.solutions.drawing_styles
# 處理單幀的函數(shù)
def process_frame(img):
#記錄該幀處理的開始時間
start_time=time.time()
img_RGB=cv.cvtColor(img,cv.COLOR_BGR2RGB)
results=model.process(img_RGB)
if results.multi_face_landmarks:
for face_landmarks in results.multi_face_landmarks:
# mp_drawing.draw_detection(
# image=img,
# landmarks_list=face_landmarks,
# connections=mp_face_mesh.FACEMESH_TESSELATION,
# landmarks_drawing_spec=None,
# landmarks_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
# )
# 繪制人臉網(wǎng)格
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_TESSELATION,
# landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
# 繪制人臉輪廓、眼睫毛、眼眶、嘴唇
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_CONTOURS,
# landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1,circle_radius=2,color=[66,77,229]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style()
)
# 繪制瞳孔區(qū)域
mp_drawing.draw_landmarks(
image=img,
landmark_list=face_landmarks,
connections=mp_face_mesh.FACEMESH_IRISES,
# landmark_drawing_spec為關鍵點可視化樣式,None為默認樣式(不顯示關鍵點)
# landmark_drawing_spec=mp_drawing_styles.DrawingSpec(thickness=1, circle_radius=2, color=[0, 1, 128]),
landmark_drawing_spec=None,
connection_drawing_spec=mp_drawing_styles.get_default_face_mesh_tesselation_style())
else:
img = cv.putText(img, 'NO FACE DELECTED', (25 , 50 ), cv.FONT_HERSHEY_SIMPLEX, 1.25,
(218, 112, 214), 1, 8)
#記錄該幀處理完畢的時間
end_time=time.time()
#計算每秒處理圖像的幀數(shù)FPS
FPS=1/(end_time-start_time)
scaler=1
img=cv.putText(img,'FPS'+str(int(FPS)),(25*scaler,100*scaler),cv.FONT_HERSHEY_SIMPLEX,1.25*scaler,(0,0,255),1,8)
return img
# 調(diào)用攝像頭
cap=cv.VideoCapture(0)
cap.open(0)
# 無限循環(huán),直到break被觸發(fā)
while cap.isOpened():
success,frame=cap.read()
# if not success:
# print('ERROR')
# break
frame=process_frame(frame)
#展示處理后的三通道圖像
cv.imshow('my_window',frame)
if cv.waitKey(1) &0xff==ord('q'):
break
cap.release()
cv.destroyAllWindows()

到此這篇關于opencv+mediapipe實現(xiàn)人臉檢測及攝像頭實時的文章就介紹到這了,更多相關opencv 人臉檢測及攝像頭實時內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!
相關文章
Python+Empyrical實現(xiàn)計算風險指標
Empyrical 是一個知名的金融風險指標庫。它能夠用于計算年平均回報、最大回撤、Alpha值等。下面就教你如何使用 Empyrical 這個風險指標計算神器2022-05-05
Python打包工具PyInstaller的安裝與pycharm配置支持PyInstaller詳細方法
這篇文章主要介紹了Python打包工具PyInstaller的安裝與pycharm配置支持PyInstaller詳細方法,需要的朋友可以參考下2020-02-02

