人工智能—Python實(shí)現(xiàn)線性回歸
1、概述
(1)人工智能學(xué)習(xí)
(2)機(jī)器學(xué)習(xí)
(3)有監(jiān)督學(xué)習(xí)
(4)線性回歸
2、線性回歸
(1)實(shí)現(xiàn)步驟
- 根據(jù)隨機(jī)初始化的 w x b 和 y 來計(jì)算 loss
- 根據(jù)當(dāng)前的 w x b 和 y 的值來計(jì)算梯度
- 更新梯度,循環(huán)將新的 w′ 和 b′ 復(fù)賦給 w 和 b ,最終得到一個最優(yōu)的 w′ 和 b′ 作為方程最終的
(2)數(shù)學(xué)表達(dá)式
3、代碼實(shí)現(xiàn)(Python)
(1)機(jī)器學(xué)習(xí)庫(sklearn.linear_model)
代碼:
from sklearn import linear_model from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt#用于作圖 from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False import numpy as np#用于創(chuàng)建向量 ? ? reg=linear_model.LinearRegression(fit_intercept=True,normalize=False) x=[[32.50235],[53.4268],[61.53036],[47.47564],[59.81321],[55.14219],[52.14219],[39.29957], ?[48.10504],[52.55001],[45.41873],[54.35163],[44.16405],[58.16847],[56.72721]] y=[31.70701,68.7776,62.56238,71.54663,87.23093,78.21152,79.64197,59.17149,75.33124,71.30088,55.16568,82.47885,62.00892 ,75.39287,81.43619] reg.fit(x,y) k=reg.coef_#獲取斜率w1,w2,w3,...,wn b=reg.intercept_#獲取截距w0 x0=np.arange(30,60,0.2) y0=k*x0+b print("k={0},b={1}".format(k,b)) plt.scatter(x,y) plt.plot(x0,y0,label='LinearRegression') plt.xlabel('X') plt.ylabel('Y') plt.legend() plt.show()
結(jié)果:
k=[1.36695374],b=0.13079331831460195
(2)Python詳細(xì)實(shí)現(xiàn)(方法1)
代碼:
#方法1 import numpy as np import matplotlib.pyplot as plt from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] mpl.rcParams['axes.unicode_minus'] = False #數(shù)據(jù)生成 data = [] for i in range(100): ? ? x = np.random.uniform(3., 12.) ? ? # mean=0, std=1 ? ? eps = np.random.normal(0., 1) ? ? y = 1.677 * x + 0.039 + eps ? ? data.append([x, y]) ? data = np.array(data) ? #統(tǒng)計(jì)誤差 # y = wx + b def compute_error_for_line_given_points(b, w, points): ? ? totalError = 0 ? ? for i in range(0, len(points)): ? ? ? ? x = points[i, 0] ? ? ? ? y = points[i, 1] ? ? ? ? # computer mean-squared-error ? ? ? ? totalError += (y - (w * x + b)) ** 2 ? ? # average loss for each point ? ? return totalError / float(len(points)) ? ? #計(jì)算梯度 def step_gradient(b_current, w_current, points, learningRate): ? ? b_gradient = 0 ? ? w_gradient = 0 ? ? N = float(len(points)) ? ? for i in range(0, len(points)): ? ? ? ? x = points[i, 0] ? ? ? ? y = points[i, 1] ? ? ? ? # grad_b = 2(wx+b-y) ? ? ? ? b_gradient += (2/N) * ((w_current * x + b_current) - y) ? ? ? ? # grad_w = 2(wx+b-y)*x ? ? ? ? w_gradient += (2/N) * x * ((w_current * x + b_current) - y) ? ? # update w' ? ? new_b = b_current - (learningRate * b_gradient) ? ? new_w = w_current - (learningRate * w_gradient) ? ? return [new_b, new_w] ? #迭代更新 def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations): ? ? b = starting_b ? ? w = starting_w ? ? # update for several times ? ? for i in range(num_iterations): ? ? ? ? b, w = step_gradient(b, w, np.array(points), learning_rate) ? ? return [b, w] ? ? def main(): ? ? ? learning_rate = 0.0001 ? ? initial_b = 0 ?# initial y-intercept guess ? ? initial_w = 0 ?# initial slope guess ? ? num_iterations = 1000 ? ? print("迭代前 b = {0}, w = {1}, error = {2}" ? ? ? ? ? .format(initial_b, initial_w, ? ? ? ? ? ? ? ? ? compute_error_for_line_given_points(initial_b, initial_w, data)) ? ? ? ? ? ) ? ? print("Running...") ? ? [b, w] = gradient_descent_runner(data, initial_b, initial_w, learning_rate, num_iterations) ? ? print("第 {0} 次迭代結(jié)果 b = {1}, w = {2}, error = {3}". ? ? ? ? ? format(num_iterations, b, w, ? ? ? ? ? ? ? ? ?compute_error_for_line_given_points(b, w, data)) ? ? ? ? ? ) ? ? plt.plot(data[:,0],data[:,1], color='b', marker='+', linestyle='--',label='true') ? ? plt.plot(data[:,0],w*data[:,0]+b,color='r',label='predict') ? ? plt.xlabel('X') ? ? plt.ylabel('Y') ? ? plt.legend() ? ? plt.show() ? ? if __name__ == '__main__': ? ? main() ? ?
結(jié)果:
迭代前 :b = 0, w = 0, error = 186.61000821356697
Running...
第 1000 次迭代結(jié)果:b = 0.20558501549252192, w = 1.6589067569038516, error = 0.9963685680112963
(3)Python詳細(xì)實(shí)現(xiàn)(方法2)
代碼:
#方法2 ? import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl mpl.rcParams["font.sans-serif"]=["SimHei"] mpl.rcParams["axes.unicode_minus"]=False ? ? # y = wx + b #Import data file=pd.read_csv("data.csv") ? def compute_error_for_line_given(b, w): ? ? totalError = np.sum((file['y']-(w*file['x']+b))**2) ? ? return np.mean(totalError) ? def step_gradient(b_current, w_current, ?learningRate): ? ? b_gradient = 0 ? ? w_gradient = 0 ? ? N = float(len(file['x'])) ? ? for i in range (0,len(file['x'])): ? ? ? ? # grad_b = 2(wx+b-y) ? ? ? ? b_gradient += (2 / N) * ((w_current * file['x'] + b_current) - file['y']) ? ? ? ? # grad_w = 2(wx+b-y)*x ? ? ? ? w_gradient += (2 / N) * file['x'] * ((w_current * file['x'] + b_current) - file['x']) ? ? # update w' ? ? new_b = b_current - (learningRate * b_gradient) ? ? new_w = w_current - (learningRate * w_gradient) ? ? return [new_b, new_w] ? ? def gradient_descent_runner( starting_b, starting_w, learning_rate, num_iterations): ? ? b = starting_b ? ? w = starting_w ? ? # update for several times ? ? for i in range(num_iterations): ? ? ? ? b, w = step_gradient(b, w, ?learning_rate) ? ? return [b, w] ? ? def main(): ? ? learning_rate = 0.0001 ? ? initial_b = 0 ?# initial y-intercept guess ? ? initial_w = 0 ?# initial slope guess ? ? num_iterations = 100 ? ? print("Starting gradient descent at b = {0}, w = {1}, error = {2}" ? ? ? ? ? .format(initial_b, initial_w, ? ? ? ? ? ? ? ? ? compute_error_for_line_given(initial_b, initial_w)) ? ? ? ? ? ) ? ? print("Running...") ? ? [b, w] = gradient_descent_runner(initial_b, initial_w, learning_rate, num_iterations) ? ? print("After {0} iterations b = {1}, w = {2}, error = {3}". ? ? ? ? ? format(num_iterations, b, w, ? ? ? ? ? ? ? ? ?compute_error_for_line_given(b, w)) ? ? ? ? ? ) ? ? plt.plot(file['x'],file['y'],'ro',label='線性回歸') ? ? plt.xlabel('X') ? ? plt.ylabel('Y') ? ? plt.legend() ? ? plt.show() ? ? ? ? if __name__ == '__main__': ? ? main()
結(jié)果:
Starting gradient descent at b = 0, w = 0, error = 75104.71822821398 Running... After 100 iterations b = 0 ? ? 0.014845 1 ? ? 0.325621 2 ? ? 0.036883 3 ? ? 0.502265 4 ? ? 0.564917 5 ? ? 0.479366 6 ? ? 0.568968 7 ? ? 0.422619 8 ? ? 0.565073 9 ? ? 0.393907 10 ? ?0.216854 11 ? ?0.580750 12 ? ?0.379350 13 ? ?0.361574 14 ? ?0.511651 dtype: float64, w = 0 ? ? 0.999520 1 ? ? 0.994006 2 ? ? 0.999405 3 ? ? 0.989645 4 ? ? 0.990683 5 ? ? 0.991444 6 ? ? 0.989282 7 ? ? 0.989573 8 ? ? 0.988498 9 ? ? 0.992633 10 ? ?0.995329 11 ? ?0.989490 12 ? ?0.991617 13 ? ?0.993872 14 ? ?0.991116 dtype: float64, error = 6451.5510231710905
數(shù)據(jù):
(4)Python詳細(xì)實(shí)現(xiàn)(方法3)
#方法3 ? import numpy as np ? points = np.genfromtxt("data.csv", delimiter=",") #從數(shù)據(jù)讀入到返回需要兩個迭代循環(huán),第一個迭代將文件中每一行轉(zhuǎn)化為一個字符串序列, #第二個循環(huán)迭代對每個字符串序列指定合適的數(shù)據(jù)類型: # y = wx + b def compute_error_for_line_given_points(b, w, points): ? ? totalError = 0 ? ? for i in range(0, len(points)): ? ? ? ? x = points[i, 0] ? ? ? ? y = points[i, 1] ? ? ? ? # computer mean-squared-error ? ? ? ? totalError += (y - (w * x + b)) ** 2 ? ? # average loss for each point ? ? return totalError / float(len(points)) ? ? def step_gradient(b_current, w_current, points, learningRate): ? ? b_gradient = 0 ? ? w_gradient = 0 ? ? N = float(len(points)) ? ? for i in range(0, len(points)): ? ? ? ? x = points[i, 0] ? ? ? ? y = points[i, 1] ? ? ? ? # grad_b = 2(wx+b-y) ? ? ? ? b_gradient += (2 / N) * ((w_current * x + b_current) - y) ? ? ? ? # grad_w = 2(wx+b-y)*x ? ? ? ? w_gradient += (2 / N) * x * ((w_current * x + b_current) - y) ? ? # update w' ? ? new_b = b_current - (learningRate * b_gradient) ? ? new_w = w_current - (learningRate * w_gradient) ? ? return [new_b, new_w] ? ? def gradient_descent_runner(points, starting_b, starting_w, learning_rate, num_iterations): ? ? b = starting_b ? ? w = starting_w ? ? # update for several times ? ? for i in range(num_iterations): ? ? ? ? b, w = step_gradient(b, w, np.array(points), learning_rate) ? ? return [b, w] ? ? def main(): ? ? learning_rate = 0.0001 ? ? initial_b = 0 ?# initial y-intercept guess ? ? initial_w = 0 ?# initial slope guess ? ? num_iterations = 1000 ? ? print("Starting gradient descent at b = {0}, w = {1}, error = {2}" ? ? ? ? ? .format(initial_b, initial_w, ? ? ? ? ? ? ? ? ? compute_error_for_line_given_points(initial_b, initial_w, points)) ? ? ? ? ? ) ? ? print("Running...") ? ? [b, w] = gradient_descent_runner(points, initial_b, initial_w, learning_rate, num_iterations) ? ? print("After {0} iterations b = {1}, w = {2}, error = {3}". ? ? ? ? ? format(num_iterations, b, w, ? ? ? ? ? ? ? ? ?compute_error_for_line_given_points(b, w, points)) ? ? ? ? ? ) ? ? if __name__ == '__main__': ? ? main()
4、案例——房屋與價格、尺寸
(1)代碼
#1.導(dǎo)入包 import matplotlib.pyplot as plt import numpy as np import pandas as pd from sklearn import linear_model ? #2.加載訓(xùn)練數(shù)據(jù),建立回歸方程 # 取數(shù)據(jù)集(1) datasets_X = [] ? ? #存放房屋面積 datasets_Y = [] ? ? #存放交易價格 fr = open('房價與房屋尺寸.csv','r') ? ?#讀取文件,r: 以只讀方式打開文件,w: 打開一個文件只用于寫入。 lines = fr.readlines() ? ? ? ? ? ? ?#一次讀取整個文件。 for line in lines: ? ? ? ? ? ? ? ? ?#逐行進(jìn)行操作,循環(huán)遍歷所有數(shù)據(jù) ? ? items = line.strip().split(',') ? ?#去除數(shù)據(jù)文件中的逗號,strip()用于移除字符串頭尾指定的字符(默認(rèn)為空格或換行符)或字符序列。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?#split(‘ '): 通過指定分隔符對字符串進(jìn)行切片,如果參數(shù) num 有指定值,則分隔 num+1 個子字符串。 ? ? datasets_X.append(int(items[0])) ? #將讀取的數(shù)據(jù)轉(zhuǎn)換為int型,并分別寫入 ? ? datasets_Y.append(int(items[1])) ? length = len(datasets_X) ? ? ? ? ? ? ?#求得datasets_X的長度,即為數(shù)據(jù)的總數(shù) datasets_X = np.array(datasets_X).reshape([length,1]) ? #將datasets_X轉(zhuǎn)化為數(shù)組,并變?yōu)?維,以符合線性回歸擬合函數(shù)輸入?yún)?shù)要求 datasets_Y = np.array(datasets_Y) ? ? ? ? ? ? ? ? ? ?#將datasets_Y轉(zhuǎn)化為數(shù)組 ? #取數(shù)據(jù)集(2) '''fr = pd.read_csv('房價與房屋尺寸.csv',encoding='utf-8') datasets_X=fr['房屋面積'] datasets_Y=fr['交易價格']''' ? minX = min(datasets_X) maxX = max(datasets_X) X = np.arange(minX,maxX).reshape([-1,1]) ? ? ? ?#以數(shù)據(jù)datasets_X的最大值和最小值為范圍,建立等差數(shù)列,方便后續(xù)畫圖。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? #reshape([-1,1]),轉(zhuǎn)換成1列,reshape([2,-1]):轉(zhuǎn)換成兩行 linear = linear_model.LinearRegression() ? ? ?#調(diào)用線性回歸模塊,建立回歸方程,擬合數(shù)據(jù) linear.fit(datasets_X, datasets_Y) ? #3.斜率及截距 print('Coefficients:', linear.coef_) ? ? ?#查看回歸方程系數(shù)(k) print('intercept:', linear.intercept_) ? ?##查看回歸方程截距(b) print('y={0}x+{1}'.format(linear.coef_,linear.intercept_)) #擬合線 ? # 4.圖像中顯示 plt.scatter(datasets_X, datasets_Y, color = 'red') plt.plot(X, linear.predict(X), color = 'blue') plt.xlabel('Area') plt.ylabel('Price') plt.show()
(2)結(jié)果
Coefficients: [0.14198749] intercept: 53.43633899175563 y=[0.14198749]x+53.43633899175563
(3)數(shù)據(jù)
第一列是房屋面積,第二列是交易價格
到此這篇關(guān)于人工智能—Python實(shí)現(xiàn)線性回歸的文章就介紹到這了,更多相關(guān) Python實(shí)現(xiàn)線性回歸內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
python計(jì)算無向圖節(jié)點(diǎn)度的實(shí)例代碼
今天小編就為大家分享一篇python計(jì)算無向圖節(jié)點(diǎn)度的實(shí)例代碼,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2019-11-11Python可跨平臺實(shí)現(xiàn)獲取按鍵的方法
這篇文章主要介紹了Python可跨平臺實(shí)現(xiàn)獲取按鍵的方法,分別針對windows及Unix等不同平臺獲取按鍵的技巧,具有一定參考借鑒價值,需要的朋友可以參考下2015-03-03Python分支結(jié)構(gòu)(switch)操作簡介
這篇文章主要介紹了Python分支結(jié)構(gòu)(switch)操作簡介,具有一定借鑒價值,需要的朋友可以參考下2018-01-01Python實(shí)現(xiàn)向好友發(fā)送微信消息
利用python可以實(shí)現(xiàn)微信消息發(fā)送功能,怎么實(shí)現(xiàn)呢?你肯定會想著很復(fù)雜,但是python的好處就是很多人已經(jīng)把接口打包做好了,只需要調(diào)用即可,今天通過本文給大家分享使用?Python?實(shí)現(xiàn)微信消息發(fā)送的思路代碼,一起看看吧2022-06-06