python多線程方法詳解
處理多個數(shù)據(jù)和多文件時,使用for循環(huán)的速度非常慢,此時需要用多線程來加速運行進(jìn)度,常用的模塊為multiprocess和joblib,下面對兩種包我常用的方法進(jìn)行說明。
1、模塊安裝
pip install multiprocessing pip install joblib
2、以分塊計算NDVI為例
首先導(dǎo)入需要的包
import numpy as np from osgeo import gdal import time from multiprocessing import cpu_count from multiprocessing import Pool from joblib import Parallel, delayed
定義GdalUtil類,以讀取遙感數(shù)據(jù)
class GdalUtil:
def __init__(self):
pass
@staticmethod
def read_file(raster_file, read_band=None):
"""讀取柵格數(shù)據(jù)"""
# 注冊柵格驅(qū)動
gdal.AllRegister()
gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
# 打開輸入圖像
dataset = gdal.Open(raster_file, gdal.GA_ReadOnly)
if dataset == None:
print('打開圖像{0} 失敗.\n', raster_file)
# 列
raster_width = dataset.RasterXSize
# 行
raster_height = dataset.RasterYSize
# 讀取數(shù)據(jù)
if read_band == None:
data_array = dataset.ReadAsArray(0, 0, raster_width, raster_height)
else:
band = dataset.GetRasterBand(read_band)
data_array = band.ReadAsArray(0, 0, raster_width, raster_height)
return data_array
@staticmethod
def read_block_data(dataset, band_num, cols_read, rows_read, start_col=0, start_row=0):
band = dataset.GetRasterBand(band_num)
res_data = band.ReadAsArray(start_col, start_row, cols_read, rows_read)
return res_data
@staticmethod
def get_raster_band(raster_path):
# 注冊柵格驅(qū)動
gdal.AllRegister()
gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
# 打開輸入圖像
dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
if dataset == None:
print('打開圖像{0} 失敗.\n', raster_path)
raster_band = dataset.RasterCount
return raster_band
@staticmethod
def get_file_size(raster_path):
"""獲取柵格仿射變換參數(shù)"""
# 注冊柵格驅(qū)動
gdal.AllRegister()
gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
# 打開輸入圖像
dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
if dataset == None:
print('打開圖像{0} 失敗.\n', raster_path)
# 列
raster_width = dataset.RasterXSize
# 行
raster_height = dataset.RasterYSize
return raster_width, raster_height
@staticmethod
def get_file_geotransform(raster_path):
"""獲取柵格仿射變換參數(shù)"""
# 注冊柵格驅(qū)動
gdal.AllRegister()
gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
# 打開輸入圖像
dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
if dataset == None:
print('打開圖像{0} 失敗.\n', raster_path)
# 獲取輸入圖像仿射變換參數(shù)
input_geotransform = dataset.GetGeoTransform()
return input_geotransform
@staticmethod
def get_file_proj(raster_path):
"""獲取柵格圖像空間參考"""
# 注冊柵格驅(qū)動
gdal.AllRegister()
gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES')
# 打開輸入圖像
dataset = gdal.Open(raster_path, gdal.GA_ReadOnly)
if dataset == None:
print('打開圖像{0} 失敗.\n', raster_path)
# 獲取輸入圖像空間參考
input_project = dataset.GetProjection()
return input_project
@staticmethod
def write_file(dataset, geotransform, project, output_path, out_format='GTiff', eType=gdal.GDT_Float32):
"""寫入柵格"""
if np.ndim(dataset) == 3:
out_band, out_rows, out_cols = dataset.shape
else:
out_band = 1
out_rows, out_cols = dataset.shape
# 創(chuàng)建指定輸出格式的驅(qū)動
out_driver = gdal.GetDriverByName(out_format)
if out_driver == None:
print('格式%s 不支持Creat()方法.\n', out_format)
return
out_dataset = out_driver.Create(output_path, xsize=out_cols,
ysize=out_rows, bands=out_band,
eType=eType)
# 設(shè)置輸出圖像的仿射參數(shù)
out_dataset.SetGeoTransform(geotransform)
# 設(shè)置輸出圖像的投影參數(shù)
out_dataset.SetProjection(project)
# 寫出數(shù)據(jù)
if out_band == 1:
out_dataset.GetRasterBand(1).WriteArray(dataset)
else:
for i in range(out_band):
out_dataset.GetRasterBand(i + 1).WriteArray(dataset[i])
del out_dataset定義計算NDVI的函數(shù)
def cal_ndvi(multi):
'''
計算高分NDVI
:param multi:格式為列表,依次包含[遙感文件路徑,開始行號,開始列號,待讀的行數(shù),待讀的列數(shù)]
:return: NDVI數(shù)組
'''
input_file, start_col, start_row, cols_step, rows_step = multi
dataset = gdal.Open(input_file, gdal.GA_ReadOnly)
nir_data = GdalUtil.read_block_data(dataset, 4, cols_step, rows_step, start_col=start_col, start_row=start_row)
red_data = GdalUtil.read_block_data(dataset, 3, cols_step, rows_step, start_col=start_col, start_row=start_row)
ndvi = (nir_data - red_data) / (nir_data + red_data)
ndvi[(ndvi > 1.5) | (ndvi < -1)] = 0
return ndvi定義主函數(shù)
if __name__ == "__main__":
input_file = r'D:\originalData\GF1\namucuo2021.tif'
output_file = r'D:\originalData\GF1\namucuo2021_ndvi.tif'
method = 'joblib'
# method = 'multiprocessing'
# 獲取文件主要信息
raster_cols, raster_rows = GdalUtil.get_file_size(input_file)
geotransform = GdalUtil.get_file_geotransform(input_file)
project = GdalUtil.get_file_proj(input_file)
# 定義分塊大小
rows_block_size = 50
cols_block_size = 50
multi = []
for j in range(0, raster_rows, rows_block_size):
for i in range(0, raster_cols, cols_block_size):
if j + rows_block_size < raster_rows:
rows_step = rows_block_size
else:
rows_step = raster_rows - j
# 數(shù)據(jù)橫向步長
if i + cols_block_size < raster_cols:
cols_step = cols_block_size
else:
cols_step = raster_cols - i
temp_multi = [input_file, i, j, cols_step, rows_step]
multi.append(temp_multi)
t1 = time.time()
if method == 'multiprocessing':
# multiprocessing方法
pool = Pool(processes=cpu_count()-1)
# 注意map函數(shù)中傳入的參數(shù)應(yīng)該是可迭代對象,如list;返回值為list
res = pool.map(cal_ndvi, multi)
pool.close()
pool.join()
else:
# joblib方法
res = Parallel(n_jobs=-1)(delayed(cal_ndvi)(input_list) for input_list in multi)
t2 = time.time()
print("Total time:" + (t2 - t1).__str__())
# 將multiprocessing中的結(jié)果提取出來,放回對應(yīng)的矩陣位置中
out_data = np.zeros([raster_rows, raster_cols], dtype='float')
for result, input_multi in zip(res, multi):
start_col = input_multi[1]
start_row = input_multi[2]
cols_step = input_multi[3]
rows_step = input_multi[4]
out_data[start_row:start_row + rows_step, start_col:start_col + cols_step] = result
GdalUtil.write_file(out_data, geotransform, project, output_file)雙重for循環(huán)時,兩層for循環(huán)都使用multiprocessing時會報錯,這時可以外層for循環(huán)使用joblib方法,內(nèi)層for循環(huán)改為multiprocessing方法,不會報錯
到此這篇關(guān)于python多線程方法詳解的文章就介紹到這了,更多相關(guān)python多線程內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
用Python刪除本地目錄下某一時間點之前創(chuàng)建的所有文件的實例
下面小編就為大家分享一篇用Python刪除本地目錄下某一時間點之前創(chuàng)建的所有文件的實例,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2017-12-12
python用opencv完成圖像分割并進(jìn)行目標(biāo)物的提取
這篇文章主要介紹了python用opencv完成圖像分割并進(jìn)行目標(biāo)物的提取,文中通過示例代碼介紹的非常詳細(xì),對大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價值,需要的朋友們下面隨著小編來一起學(xué)習(xí)學(xué)習(xí)吧2020-05-05

