python多線程方法詳解
處理多個(gè)數(shù)據(jù)和多文件時(shí),使用for循環(huán)的速度非常慢,此時(shí)需要用多線程來(lái)加速運(yùn)行進(jìn)度,常用的模塊為multiprocess和joblib,下面對(duì)兩種包我常用的方法進(jìn)行說(shuō)明。
1、模塊安裝
pip install multiprocessing pip install joblib
2、以分塊計(jì)算NDVI為例
首先導(dǎo)入需要的包
import numpy as np from osgeo import gdal import time from multiprocessing import cpu_count from multiprocessing import Pool from joblib import Parallel, delayed
定義GdalUtil類,以讀取遙感數(shù)據(jù)
class GdalUtil: def __init__(self): pass @staticmethod def read_file(raster_file, read_band=None): """讀取柵格數(shù)據(jù)""" # 注冊(cè)柵格驅(qū)動(dòng) gdal.AllRegister() gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES') # 打開輸入圖像 dataset = gdal.Open(raster_file, gdal.GA_ReadOnly) if dataset == None: print('打開圖像{0} 失敗.\n', raster_file) # 列 raster_width = dataset.RasterXSize # 行 raster_height = dataset.RasterYSize # 讀取數(shù)據(jù) if read_band == None: data_array = dataset.ReadAsArray(0, 0, raster_width, raster_height) else: band = dataset.GetRasterBand(read_band) data_array = band.ReadAsArray(0, 0, raster_width, raster_height) return data_array @staticmethod def read_block_data(dataset, band_num, cols_read, rows_read, start_col=0, start_row=0): band = dataset.GetRasterBand(band_num) res_data = band.ReadAsArray(start_col, start_row, cols_read, rows_read) return res_data @staticmethod def get_raster_band(raster_path): # 注冊(cè)柵格驅(qū)動(dòng) gdal.AllRegister() gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES') # 打開輸入圖像 dataset = gdal.Open(raster_path, gdal.GA_ReadOnly) if dataset == None: print('打開圖像{0} 失敗.\n', raster_path) raster_band = dataset.RasterCount return raster_band @staticmethod def get_file_size(raster_path): """獲取柵格仿射變換參數(shù)""" # 注冊(cè)柵格驅(qū)動(dòng) gdal.AllRegister() gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES') # 打開輸入圖像 dataset = gdal.Open(raster_path, gdal.GA_ReadOnly) if dataset == None: print('打開圖像{0} 失敗.\n', raster_path) # 列 raster_width = dataset.RasterXSize # 行 raster_height = dataset.RasterYSize return raster_width, raster_height @staticmethod def get_file_geotransform(raster_path): """獲取柵格仿射變換參數(shù)""" # 注冊(cè)柵格驅(qū)動(dòng) gdal.AllRegister() gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES') # 打開輸入圖像 dataset = gdal.Open(raster_path, gdal.GA_ReadOnly) if dataset == None: print('打開圖像{0} 失敗.\n', raster_path) # 獲取輸入圖像仿射變換參數(shù) input_geotransform = dataset.GetGeoTransform() return input_geotransform @staticmethod def get_file_proj(raster_path): """獲取柵格圖像空間參考""" # 注冊(cè)柵格驅(qū)動(dòng) gdal.AllRegister() gdal.SetConfigOption('gdal_FILENAME_IS_UTF8', 'YES') # 打開輸入圖像 dataset = gdal.Open(raster_path, gdal.GA_ReadOnly) if dataset == None: print('打開圖像{0} 失敗.\n', raster_path) # 獲取輸入圖像空間參考 input_project = dataset.GetProjection() return input_project @staticmethod def write_file(dataset, geotransform, project, output_path, out_format='GTiff', eType=gdal.GDT_Float32): """寫入柵格""" if np.ndim(dataset) == 3: out_band, out_rows, out_cols = dataset.shape else: out_band = 1 out_rows, out_cols = dataset.shape # 創(chuàng)建指定輸出格式的驅(qū)動(dòng) out_driver = gdal.GetDriverByName(out_format) if out_driver == None: print('格式%s 不支持Creat()方法.\n', out_format) return out_dataset = out_driver.Create(output_path, xsize=out_cols, ysize=out_rows, bands=out_band, eType=eType) # 設(shè)置輸出圖像的仿射參數(shù) out_dataset.SetGeoTransform(geotransform) # 設(shè)置輸出圖像的投影參數(shù) out_dataset.SetProjection(project) # 寫出數(shù)據(jù) if out_band == 1: out_dataset.GetRasterBand(1).WriteArray(dataset) else: for i in range(out_band): out_dataset.GetRasterBand(i + 1).WriteArray(dataset[i]) del out_dataset
定義計(jì)算NDVI的函數(shù)
def cal_ndvi(multi): ''' 計(jì)算高分NDVI :param multi:格式為列表,依次包含[遙感文件路徑,開始行號(hào),開始列號(hào),待讀的行數(shù),待讀的列數(shù)] :return: NDVI數(shù)組 ''' input_file, start_col, start_row, cols_step, rows_step = multi dataset = gdal.Open(input_file, gdal.GA_ReadOnly) nir_data = GdalUtil.read_block_data(dataset, 4, cols_step, rows_step, start_col=start_col, start_row=start_row) red_data = GdalUtil.read_block_data(dataset, 3, cols_step, rows_step, start_col=start_col, start_row=start_row) ndvi = (nir_data - red_data) / (nir_data + red_data) ndvi[(ndvi > 1.5) | (ndvi < -1)] = 0 return ndvi
定義主函數(shù)
if __name__ == "__main__": input_file = r'D:\originalData\GF1\namucuo2021.tif' output_file = r'D:\originalData\GF1\namucuo2021_ndvi.tif' method = 'joblib' # method = 'multiprocessing' # 獲取文件主要信息 raster_cols, raster_rows = GdalUtil.get_file_size(input_file) geotransform = GdalUtil.get_file_geotransform(input_file) project = GdalUtil.get_file_proj(input_file) # 定義分塊大小 rows_block_size = 50 cols_block_size = 50 multi = [] for j in range(0, raster_rows, rows_block_size): for i in range(0, raster_cols, cols_block_size): if j + rows_block_size < raster_rows: rows_step = rows_block_size else: rows_step = raster_rows - j # 數(shù)據(jù)橫向步長(zhǎng) if i + cols_block_size < raster_cols: cols_step = cols_block_size else: cols_step = raster_cols - i temp_multi = [input_file, i, j, cols_step, rows_step] multi.append(temp_multi) t1 = time.time() if method == 'multiprocessing': # multiprocessing方法 pool = Pool(processes=cpu_count()-1) # 注意map函數(shù)中傳入的參數(shù)應(yīng)該是可迭代對(duì)象,如list;返回值為list res = pool.map(cal_ndvi, multi) pool.close() pool.join() else: # joblib方法 res = Parallel(n_jobs=-1)(delayed(cal_ndvi)(input_list) for input_list in multi) t2 = time.time() print("Total time:" + (t2 - t1).__str__()) # 將multiprocessing中的結(jié)果提取出來(lái),放回對(duì)應(yīng)的矩陣位置中 out_data = np.zeros([raster_rows, raster_cols], dtype='float') for result, input_multi in zip(res, multi): start_col = input_multi[1] start_row = input_multi[2] cols_step = input_multi[3] rows_step = input_multi[4] out_data[start_row:start_row + rows_step, start_col:start_col + cols_step] = result GdalUtil.write_file(out_data, geotransform, project, output_file)
雙重for循環(huán)時(shí),兩層for循環(huán)都使用multiprocessing時(shí)會(huì)報(bào)錯(cuò),這時(shí)可以外層for循環(huán)使用joblib方法,內(nèi)層for循環(huán)改為multiprocessing方法,不會(huì)報(bào)錯(cuò)
到此這篇關(guān)于python多線程方法詳解的文章就介紹到這了,更多相關(guān)python多線程內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
基于PyQt5實(shí)現(xiàn)一個(gè)無(wú)線網(wǎng)連接器
為了方便不會(huì)python的朋友也能夠使用,本文將用pyqt5將制作一個(gè)帶界面的無(wú)線網(wǎng)連接器,文中的示例代碼講解詳細(xì),感興趣的可以了解一下2022-08-08Python判斷值是否在list或set中的性能對(duì)比分析
這篇文章主要介紹了Python判斷值是否在list或set中的性能對(duì)比分析,結(jié)合實(shí)例形式對(duì)比分析了使用list與set循環(huán)的執(zhí)行效率,需要的朋友可以參考下2016-04-04用Python刪除本地目錄下某一時(shí)間點(diǎn)之前創(chuàng)建的所有文件的實(shí)例
下面小編就為大家分享一篇用Python刪除本地目錄下某一時(shí)間點(diǎn)之前創(chuàng)建的所有文件的實(shí)例,具有很好的參考價(jià)值,希望對(duì)大家有所幫助。一起跟隨小編過來(lái)看看吧2017-12-12python用opencv完成圖像分割并進(jìn)行目標(biāo)物的提取
這篇文章主要介紹了python用opencv完成圖像分割并進(jìn)行目標(biāo)物的提取,文中通過示例代碼介紹的非常詳細(xì),對(duì)大家的學(xué)習(xí)或者工作具有一定的參考學(xué)習(xí)價(jià)值,需要的朋友們下面隨著小編來(lái)一起學(xué)習(xí)學(xué)習(xí)吧2020-05-05