Python?十大經(jīng)典排序算法實現(xiàn)詳解
排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一,也是面試必背題,為方便技術(shù)交流,文末創(chuàng)建技術(shù)交流群。
排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過程中需要訪問外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。用一張圖概括:
關(guān)于時間復(fù)雜度
- 平方階 (O(n2)) 排序 各類簡單排序:直接插入、直接選擇和冒泡排序。
- 線性對數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;
- O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。希爾排序
- 線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。
關(guān)于穩(wěn)定性
- 排序后 2 個相等鍵值的順序和排序之前它們的順序相同
- 穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。
- 不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。
名詞解釋
- n:數(shù)據(jù)規(guī)模
- k:“桶”的個數(shù)
- In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存
- Out-place:占用額外內(nèi)存
1、冒泡排序
冒泡排序(Bubble Sort)也是一種簡單直觀的排序算法。它重復(fù)地走訪過要排序的數(shù)列,一次比較兩個元素,如果他們的順序錯誤就把他們交換過來。走訪數(shù)列的工作是重復(fù)地進(jìn)行直到?jīng)]有再需要交換,也就是說該數(shù)列已經(jīng)排序完成。這個算法的名字由來是因為越小的元素會經(jīng)由交換慢慢“浮”到數(shù)列的頂端。
作為最簡單的排序算法之一,冒泡排序給我的感覺就像 Abandon 在單詞書里出現(xiàn)的感覺一樣,每次都在第一頁第一位,所以最熟悉。冒泡排序還有一種優(yōu)化算法,就是立一個 flag,當(dāng)在一趟序列遍歷中元素沒有發(fā)生交換,則證明該序列已經(jīng)有序。但這種改進(jìn)對于提升性能來說并沒有什么太大作用。
(1)算法步驟
- 比較相鄰的元素。如果第一個比第二個大,就交換他們兩個。
- 對每一對相鄰元素作同樣的工作,從開始第一對到結(jié)尾的最后一對。這步做完后,最后的元素會是最大的數(shù)。
- 針對所有的元素重復(fù)以上的步驟,除了最后一個。
- 持續(xù)每次對越來越少的元素重復(fù)上面的步驟,直到?jīng)]有任何一對數(shù)字需要比較。
(2)動圖演示
(3)Python 代碼
def bubbleSort(arr): for i in range(1, len(arr)): for j in range(0, len(arr)-i): if arr[j] > arr[j+1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] return arr
2、選擇排序
選擇排序是一種簡單直觀的排序算法,無論什么數(shù)據(jù)進(jìn)去都是 O(n²) 的時間復(fù)雜度。所以用到它的時候,數(shù)據(jù)規(guī)模越小越好。唯一的好處可能就是不占用額外的內(nèi)存空間了吧。
(1)算法步驟
- 首先在未排序序列中找到最?。ù螅┰?,存放到排序序列的起始位置
- 再從剩余未排序元素中繼續(xù)尋找最?。ù螅┰?,然后放到已排序序列的末尾。
- 重復(fù)第二步,直到所有元素均排序完畢。
(2)動圖演示
(3)Python 代碼
def selectionSort(arr): for i in range(len(arr) - 1): # 記錄最小數(shù)的索引 minIndex = i for j in range(i + 1, len(arr)): if arr[j] < arr[minIndex]: minIndex = j # i 不是最小數(shù)時,將 i 和最小數(shù)進(jìn)行交換 if i != minIndex: arr[i], arr[minIndex] = arr[minIndex], arr[i] return arr
3、插入排序
插入排序的代碼實現(xiàn)雖然沒有冒泡排序和選擇排序那么簡單粗暴,但它的原理應(yīng)該是最容易理解的了,因為只要打過撲克牌的人都應(yīng)該能夠秒懂。插入排序是一種最簡單直觀的排序算法,它的工作原理是通過構(gòu)建有序序列,對于未排序數(shù)據(jù),在已排序序列中從后向前掃描,找到相應(yīng)位置并插入。
插入排序和冒泡排序一樣,也有一種優(yōu)化算法,叫做拆半插入。
(1)算法步驟
- 將第一待排序序列第一個元素看做一個有序序列,把第二個元素到最后一個元素當(dāng)成是未排序序列。
- 從頭到尾依次掃描未排序序列,將掃描到的每個元素插入有序序列的適當(dāng)位置。(如果待插入的元素與有序序列中的某個元素相等,則將待插入元素插入到相等元素的后面。)
(2)動圖演示
(3)Python 代碼
def insertionSort(arr): for i in range(len(arr)): preIndex = i-1 current = arr[i] while preIndex >= 0 and arr[preIndex] > current: arr[preIndex+1] = arr[preIndex] preIndex-=1 arr[preIndex+1] = current return arr
4、希爾排序
希爾排序,也稱遞減增量排序算法,是插入排序的一種更高效的改進(jìn)版本。但希爾排序是非穩(wěn)定排序算法。
希爾排序是基于插入排序的以下兩點性質(zhì)而提出改進(jìn)方法的:
- 插入排序在對幾乎已經(jīng)排好序的數(shù)據(jù)操作時,效率高,即可以達(dá)到線性排序的效率;
- 但插入排序一般來說是低效的,因為插入排序每次只能將數(shù)據(jù)移動一位;
希爾排序的基本思想是:先將整個待排序的記錄序列分割成為若干子序列分別進(jìn)行直接插入排序,待整個序列中的記錄“基本有序”時,再對全體記錄進(jìn)行依次直接插入排序。
(1)算法步驟
- 選擇一個增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
- 按增量序列個數(shù) k,對序列進(jìn)行 k 趟排序;
- 每趟排序,根據(jù)對應(yīng)的增量 ti,將待排序列分割成若干長度為 m 的子序列,分別對各子表進(jìn)行直接插入排序。僅增量因子為 1 時,整個序列作為一個表來處理,表長度即為整個序列的長度。
(2)Python 代碼
def shellSort(arr): import math gap=1 while(gap < len(arr)/3): gap = gap*3+1 while gap > 0: for i in range(gap,len(arr)): temp = arr[i] j = i-gap while j >=0 and arr[j] > temp: arr[j+gap]=arr[j] j-=gap arr[j+gap] = temp gap = math.floor(gap/3) return arr
5、歸并排序
歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用。
作為一種典型的分而治之思想的算法應(yīng)用,歸并排序的實現(xiàn)由兩種方法:
- 自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);
- 自下而上的迭代;
和選擇排序一樣,歸并排序的性能不受輸入數(shù)據(jù)的影響,但表現(xiàn)比選擇排序好的多,因為始終都是 O(nlogn) 的時間復(fù)雜度。代價是需要額外的內(nèi)存空間。
(1)算法步驟
- 申請空間,使其大小為兩個已經(jīng)排序序列之和,該空間用來存放合并后的序列;
- 設(shè)定兩個指針,最初位置分別為兩個已經(jīng)排序序列的起始位置;
- 比較兩個指針?biāo)赶虻脑?,選擇相對小的元素放入到合并空間,并移動指針到下一位置;
- 重復(fù)步驟 3 直到某一指針達(dá)到序列尾;
- 將另一序列剩下的所有元素直接復(fù)制到合并序列尾。
(2)動圖演示
(3)Python 代碼
def mergeSort(arr): import math if(len(arr)<2): return arr middle = math.floor(len(arr)/2) left, right = arr[0:middle], arr[middle:] return merge(mergeSort(left), mergeSort(right)) def merge(left,right): result = [] while left and right: if left[0] <= right[0]: result.append(left.pop(0)); else: result.append(right.pop(0)); while left: result.append(left.pop(0)); while right: result.append(right.pop(0)); return result
6、快速排序
快速排序是由東尼·霍爾所發(fā)展的一種排序算法。在平均狀況下,排序 n 個項目要 Ο(nlogn) 次比較。在最壞狀況下則需要 Ο(n2) 次比較,但這種狀況并不常見。事實上,快速排序通常明顯比其他 Ο(nlogn) 算法更快,因為它的內(nèi)部循環(huán)(inner loop)可以在大部分的架構(gòu)上很有效率地被實現(xiàn)出來。
快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)。
快速排序又是一種分而治之思想在排序算法上的典型應(yīng)用。本質(zhì)上來看,快速排序應(yīng)該算是在冒泡排序基礎(chǔ)上的遞歸分治法。
快速排序的名字起的是簡單粗暴,因為一聽到這個名字你就知道它存在的意義,就是快,而且效率高!它是處理大數(shù)據(jù)最快的排序算法之一了。雖然 Worst Case 的時間復(fù)雜度達(dá)到了 O(n²),但是人家就是優(yōu)秀,在大多數(shù)情況下都比平均時間復(fù)雜度為 O(n logn) 的排序算法表現(xiàn)要更好,可是這是為什么呢,我也不知道。好在我的強(qiáng)迫癥又犯了,查了 N 多資料終于在《算法藝術(shù)與信息學(xué)競賽》上找到了滿意的答案:
快速排序的最壞運行情況是 O(n²),比如說順序數(shù)列的快排。但它的平攤期望時間是 O(nlogn),且 O(nlogn) 記號中隱含的常數(shù)因子很小,比復(fù)雜度穩(wěn)定等于 O(nlogn) 的歸并排序要小很多。所以,對絕大多數(shù)順序性較弱的隨機(jī)數(shù)列而言,快速排序總是優(yōu)于歸并排序。
(1)算法步驟
① 從數(shù)列中挑出一個元素,稱為 “基準(zhǔn)”(pivot);
② 重新排序數(shù)列,所有元素比基準(zhǔn)值小的擺放在基準(zhǔn)前面,所有元素比基準(zhǔn)值大的擺在基準(zhǔn)的后面(相同的數(shù)可以到任一邊)。在這個分區(qū)退出之后,該基準(zhǔn)就處于數(shù)列的中間位置。這個稱為分區(qū)(partition)操作;
③ 遞歸地(recursive)把小于基準(zhǔn)值元素的子數(shù)列和大于基準(zhǔn)值元素的子數(shù)列排序;
遞歸的最底部情形,是數(shù)列的大小是零或一,也就是永遠(yuǎn)都已經(jīng)被排序好了。雖然一直遞歸下去,但是這個算法總會退出,因為在每次的迭代(iteration)中,它至少會把一個元素擺到它最后的位置去。
(2)動圖演示
(3)Python 代碼
def quickSort(arr, left=None, right=None): left = 0 if not isinstance(left,(int, float)) else left right = len(arr)-1 if not isinstance(right,(int, float)) else right if left < right: partitionIndex = partition(arr, left, right) quickSort(arr, left, partitionIndex-1) quickSort(arr, partitionIndex+1, right) return arr def partition(arr, left, right): pivot = left index = pivot+1 i = index while i <= right: if arr[i] < arr[pivot]: swap(arr, i, index) index+=1 i+=1 swap(arr,pivot,index-1) return index-1 def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i]
7、堆排序
堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu),并同時滿足堆積的性質(zhì):即子結(jié)點的鍵值或索引總是小于(或者大于)它的父節(jié)點。堆排序可以說是一種利用堆的概念來排序的選擇排序。分為兩種方法:
- 大頂堆:每個節(jié)點的值都大于或等于其子節(jié)點的值,在堆排序算法中用于升序排列;
- 小頂堆:每個節(jié)點的值都小于或等于其子節(jié)點的值,在堆排序算法中用于降序排列;
堆排序的平均時間復(fù)雜度為 Ο(nlogn)。
(1)算法步驟
- 創(chuàng)建一個堆 H[0……n-1];
- 把堆首(最大值)和堆尾互換;
- 把堆的尺寸縮小 1,并調(diào)用 shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置;
- 重復(fù)步驟 2,直到堆的尺寸為 1。
(2)動圖演示
(3)Python 代碼
def buildMaxHeap(arr): import math for i in range(math.floor(len(arr)/2),-1,-1): heapify(arr,i) def heapify(arr, i): left = 2*i+1 right = 2*i+2 largest = i if left < arrLen and arr[left] > arr[largest]: largest = left if right < arrLen and arr[right] > arr[largest]: largest = right if largest != i: swap(arr, i, largest) heapify(arr, largest) def swap(arr, i, j): arr[i], arr[j] = arr[j], arr[i] def heapSort(arr): global arrLen arrLen = len(arr) buildMaxHeap(arr) for i in range(len(arr)-1,0,-1): swap(arr,0,i) arrLen -=1 heapify(arr, 0) return arr
8、計數(shù)排序
計數(shù)排序的核心在于將輸入的數(shù)據(jù)值轉(zhuǎn)化為鍵存儲在額外開辟的數(shù)組空間中。作為一種線性時間復(fù)雜度的排序,計數(shù)排序要求輸入的數(shù)據(jù)必須是有確定范圍的整數(shù)。
(1)動圖演示
(2)Python 代碼
def countingSort(arr, maxValue): bucketLen = maxValue+1 bucket = [0]*bucketLen sortedIndex =0 arrLen = len(arr) for i in range(arrLen): if not bucket[arr[i]]: bucket[arr[i]]=0 bucket[arr[i]]+=1 for j in range(bucketLen): while bucket[j]>0: arr[sortedIndex] = j sortedIndex+=1 bucket[j]-=1 return arr
9、桶排序
桶排序是計數(shù)排序的升級版。它利用了函數(shù)的映射關(guān)系,高效與否的關(guān)鍵就在于這個映射函數(shù)的確定。為了使桶排序更加高效,我們需要做到這兩點:
- 在額外空間充足的情況下,盡量增大桶的數(shù)量
- 使用的映射函數(shù)能夠?qū)⑤斎氲?N 個數(shù)據(jù)均勻的分配到 K 個桶中
同時,對于桶中元素的排序,選擇何種比較排序算法對于性能的影響至關(guān)重要。
什么時候最快
當(dāng)輸入的數(shù)據(jù)可以均勻的分配到每一個桶中。
什么時候最慢
當(dāng)輸入的數(shù)據(jù)被分配到了同一個桶中。
Python 代碼
def bucket_sort(s): """桶排序""" min_num = min(s) max_num = max(s) # 桶的大小 bucket_range = (max_num-min_num) / len(s) # 桶數(shù)組 count_list = [ [] for i in range(len(s) + 1)] # 向桶數(shù)組填數(shù) for i in s: count_list[int((i-min_num)//bucket_range)].append(i) s.clear() # 回填,這里桶內(nèi)部排序直接調(diào)用了sorted for i in count_list: for j in sorted(i): s.append(j) if __name__ == __main__ : a = [3.2,6,8,4,2,6,7,3] bucket_sort(a) print(a) # [2, 3, 3.2, 4, 6, 6, 7, 8]
10、基數(shù)排序
基數(shù)排序是一種非比較型整數(shù)排序算法,其原理是將整數(shù)按位數(shù)切割成不同的數(shù)字,然后按每個位數(shù)分別比較。由于整數(shù)也可以表達(dá)字符串(比如名字或日期)和特定格式的浮點數(shù),所以基數(shù)排序也不是只能使用于整數(shù)。
基數(shù)排序 vs 計數(shù)排序 vs 桶排序
基數(shù)排序有兩種方法:
這三種排序算法都利用了桶的概念,但對桶的使用方法上有明顯差異:
- 基數(shù)排序:根據(jù)鍵值的每位數(shù)字來分配桶;
- 計數(shù)排序:每個桶只存儲單一鍵值;
- 桶排序:每個桶存儲一定范圍的數(shù)值;
動圖演示
Python 代碼
def RadixSort(list): i = 0 #初始為個位排序 n = 1 #最小的位數(shù)置為1(包含0) max_num = max(list) #得到帶排序數(shù)組中最大數(shù) while max_num > 10**n: #得到最大數(shù)是幾位數(shù) n += 1 while i < n: bucket = {} #用字典構(gòu)建桶 for x in range(10): bucket.setdefault(x, []) #將每個桶置空 for x in list: #對每一位進(jìn)行排序 radix =int((x / (10**i)) % 10) #得到每位的基數(shù) bucket[radix].append(x) #將對應(yīng)的數(shù)組元素加入到相 #應(yīng)位基數(shù)的桶中 j = 0 for k in range(10): if len(bucket[k]) != 0: #若桶不為空 for y in bucket[k]: #將該桶中每個元素 list[j] = y #放回到數(shù)組中 j += 1 i += 1 return list
到此這篇關(guān)于Python 十大經(jīng)典排序算法實現(xiàn)詳解的文章就介紹到這了,更多相關(guān)Python 排序算法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU
這篇文章主要介紹了tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this T的相關(guān)知識,本文給大家介紹的非常詳細(xì),對大家的學(xué)習(xí)或工作具有一定的參考借鑒價值,需要的朋友可以參考下2020-06-06Python讀取文件內(nèi)容為字符串的方法(多種方法詳解)
這篇文章主要介紹了Python讀取文件內(nèi)容為字符串的方法,本文通過三種方式給大家介紹,在文章末尾給大家提到了python讀取txt文件中字符串,字符串用空格分隔的相關(guān)知識,需要的朋友可以參考下2020-03-03解決django的template中如果無法引用MEDIA_URL問題
這篇文章主要介紹了解決django的template中如果無法引用MEDIA_URL問題,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-04-04Tensorflow設(shè)置顯存自適應(yīng),顯存比例的操作
今天小編就為大家分享一篇Tensorflow設(shè)置顯存自適應(yīng),顯存比例的操作,具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2020-02-02Python定義一個跨越多行的字符串的多種方法小結(jié)
今天小編就為大家分享一篇Python定義一個跨越多行的字符串的多種方法小結(jié),具有很好的參考價值,希望對大家有所幫助。一起跟隨小編過來看看吧2018-07-07