詳解Python prometheus_client使用方式
背景說明
服務(wù)部署在阿里云的K8s上,配置了基于Prometheus的Grafana監(jiān)控。原本用的是自定義的Metrics接口統(tǒng)計,上報一些字段,后面發(fā)現(xiàn)Prometheus自帶的監(jiān)控非常全面好用,適合直接抓取統(tǒng)計,所以做了一些改變。
Python prometheus-client 安裝
pip install prometheus-client
Python封裝
# encoding: utf-8 from prometheus_client import Counter, Gauge, Summary from prometheus_client.core import CollectorRegistry from prometheus_client.exposition import choose_encoder class Monitor: def __init__(self): # 注冊收集器&最大耗時map self.collector_registry = CollectorRegistry(auto_describe=False) self.request_time_max_map = {} # 接口調(diào)用summary統(tǒng)計 self.http_request_summary = Summary(name="http_server_requests_seconds", documentation="Num of request time summary", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 接口最大耗時統(tǒng)計 self.http_request_max_cost = Gauge(name="http_server_requests_seconds_max", documentation="Number of request max cost", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 請求失敗次數(shù)統(tǒng)計 self.http_request_fail_count = Counter(name="http_server_requests_error", documentation="Times of request fail in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 模型預測耗時統(tǒng)計 self.http_request_predict_cost = Counter(name="http_server_requests_seconds_predict", documentation="Seconds of prediction cost in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 圖片下載耗時統(tǒng)計 self.http_request_download_cost = Counter(name="http_server_requests_seconds_download", documentation="Seconds of download cost in total", labelnames=("method", "code", "uri"), registry=self.collector_registry) # 獲取/metrics結(jié)果 def get_prometheus_metrics_info(self, handler): encoder, content_type = choose_encoder(handler.request.headers.get('accept')) handler.set_header("Content-Type", content_type) handler.write(encoder(self.collector_registry)) self.reset_request_time_max_map() # summary統(tǒng)計 def set_prometheus_request_summary(self, handler): self.http_request_summary.labels(handler.request.method, handler.get_status(), handler.request.path).observe(handler.request.request_time()) self.set_prometheus_request_max_cost(handler) # 自定義summary統(tǒng)計 def set_prometheus_request_summary_customize(self, method, status, path, cost_time): self.http_request_summary.labels(method, status, path).observe(cost_time) self.set_prometheus_request_max_cost_customize(method, status, path, cost_time) # 失敗統(tǒng)計 def set_prometheus_request_fail_count(self, handler, amount=1.0): self.http_request_fail_count.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義失敗統(tǒng)計 def set_prometheus_request_fail_count_customize(self, method, status, path, amount=1.0): self.http_request_fail_count.labels(method, status, path).inc(amount) # 最大耗時統(tǒng)計 def set_prometheus_request_max_cost(self, handler): requset_cost = handler.request.request_time() if self.check_request_time_max_map(handler.request.path, requset_cost): self.http_request_max_cost.labels(handler.request.method, handler.get_status(), handler.request.path).set(requset_cost) self.request_time_max_map[handler.request.path] = requset_cost # 自定義最大耗時統(tǒng)計 def set_prometheus_request_max_cost_customize(self, method, status, path, cost_time): if self.check_request_time_max_map(path, cost_time): self.http_request_max_cost.labels(method, status, path).set(cost_time) self.request_time_max_map[path] = cost_time # 預測耗時統(tǒng)計 def set_prometheus_request_predict_cost(self, handler, amount=1.0): self.http_request_predict_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義預測耗時統(tǒng)計 def set_prometheus_request_predict_cost_customize(self, method, status, path, cost_time): self.http_request_predict_cost.labels(method, status, path).inc(cost_time) # 下載耗時統(tǒng)計 def set_prometheus_request_download_cost(self, handler, amount=1.0): self.http_request_download_cost.labels(handler.request.method, handler.get_status(), handler.request.path).inc(amount) # 自定義下載耗時統(tǒng)計 def set_prometheus_request_download_cost_customize(self, method, status, path, cost_time): self.http_request_download_cost.labels(method, status, path).inc(cost_time) # 校驗是否賦值最大耗時map def check_request_time_max_map(self, uri, cost): if uri not in self.request_time_max_map: return True if self.request_time_max_map[uri] < cost: return True return False # 重置最大耗時map def reset_request_time_max_map(self): for key in self.request_time_max_map: self.request_time_max_map[key] = 0.0
調(diào)用
import tornado import tornado.ioloop import tornado.web import tornado.gen from datetime import datetime from tools.monitor import Monitor global g_monitor class ClassifierHandler(tornado.web.RequestHandler): def post(self): # TODO Something you need # work.... # 統(tǒng)計Summary,包括請求次數(shù)和每次耗時 g_monitor.set_prometheus_request_summary(self) self.write("OK") class PingHandler(tornado.web.RequestHandler): def head(self): print('INFO', datetime.now(), "/ping Head.") g_monitor.set_prometheus_request_summary(self) self.write("OK") def get(self): print('INFO', datetime.now(), "/ping Get.") g_monitor.set_prometheus_request_summary(self) self.write("OK") class MetricsHandler(tornado.web.RequestHandler): def get(self): print('INFO', datetime.now(), "/metrics Get.") g_monitor.set_prometheus_request_summary(self) # 通過Metrics接口返回統(tǒng)計結(jié)果 g_monitor.get_prometheus_metrics_info(self) def make_app(): return tornado.web.Application([ (r"/ping?", PingHandler), (r"/metrics?", MetricsHandler), (r"/work?", ClassifierHandler) ]) if __name__ == "__main__": g_monitor = Monitor() app = make_app() app.listen(port) tornado.ioloop.IOLoop.current().start()
Metrics返回結(jié)果實例
到此這篇關(guān)于詳解Python prometheus_client使用方式的文章就介紹到這了,更多相關(guān)Python prometheus_client內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
關(guān)于Python 3中print函數(shù)的換行詳解
最近在學習python3,發(fā)現(xiàn)了一個問題想著總結(jié)出來,所以下面這篇文章主要給大家介紹了關(guān)于Python 3中print函數(shù)換行的相關(guān)資料,文中通過示例代碼介紹的非常詳細,對需要的朋友們具有一定的參考學習價值,感興趣的朋友們下面隨著小編來一起學習學習吧。2017-08-08python實現(xiàn)基于SVM手寫數(shù)字識別功能
這篇文章主要為大家詳細介紹了python實現(xiàn)基于SVM手寫數(shù)字識別功能,文中示例代碼介紹的非常詳細,具有一定的參考價值,感興趣的小伙伴們可以參考一下2018-01-01python破解WiFi教程代碼,Python蹭網(wǎng)原理講解
用Python生成一個簡單的密碼本,一般是有數(shù)字、字母和符號組成,這里用到的思路主要是窮舉法。通過使用pywifi?模塊,根據(jù)密碼本暴力破解WiFi。本文只是從技術(shù)的角度來闡述學習Pywifi庫!并不建議大家做任何破壞性的操作和任何不當?shù)男袨椋?/div> 2023-01-01最新評論