欧美bbbwbbbw肥妇,免费乱码人妻系列日韩,一级黄片

Python大數(shù)據(jù)用Numpy Array的原因解讀

 更新時(shí)間:2022年02月19日 12:24:21   作者:IT界搬運(yùn)喵  
一個(gè)Numpy數(shù)組由許多值組成,所有值的類型是相同的,Numpy 是Python科學(xué)計(jì)算的一個(gè)核心模塊,本文重點(diǎn)給大家介紹Python大數(shù)據(jù)Numpy Array的相關(guān)知識(shí),感興趣的朋友一起看看吧

Numpy 是Python科學(xué)計(jì)算的一個(gè)核心模塊。它提供了非常高效的數(shù)組對(duì)象,以及用于處理這些數(shù)組對(duì)象的工具。一個(gè)Numpy數(shù)組由許多值組成,所有值的類型是相同的。

Python的核心庫(kù)提供了 List 列表。列表是最常見的Python數(shù)據(jù)類型之一,它可以調(diào)整大小并且包含不同類型的元素,非常方便。

那么List和Numpy Array到底有什么區(qū)別?為什么我們需要在大數(shù)據(jù)處理的時(shí)候使用Numpy Array?答案是性能。

Numpy數(shù)據(jù)結(jié)構(gòu)在以下方面表現(xiàn)更好:

1.內(nèi)存大小—Numpy數(shù)據(jù)結(jié)構(gòu)占用的內(nèi)存更小。

2.性能—Numpy底層是用C語言實(shí)現(xiàn)的,比列表更快。

3.運(yùn)算方法—內(nèi)置優(yōu)化了代數(shù)運(yùn)算等方法。

下面分別講解在大數(shù)據(jù)處理時(shí),Numpy數(shù)組相對(duì)于List的優(yōu)勢(shì)。

1.內(nèi)存占用更小

適當(dāng)?shù)厥褂肗umpy數(shù)組替代List,你能讓你的內(nèi)存占用降低20倍。

對(duì)于Python原生的List列表,由于每次新增對(duì)象,都需要8個(gè)字節(jié)來引用新對(duì)象,新的對(duì)象本身占28個(gè)字節(jié)(以整數(shù)為例)。所以列表 list 的大小可以用以下公式計(jì)算:

64 + 8 * len(lst) + len(lst) * 28 字節(jié)

而使用Numpy,就能減少非常多的空間占用。比如長(zhǎng)度為n的Numpy整形Array,它需要:

96 + len(a) * 8 字節(jié)

可見,數(shù)組越大,你節(jié)省的內(nèi)存空間越多。假設(shè)你的數(shù)組有10億個(gè)元素,那么這個(gè)內(nèi)存占用大小的差距會(huì)是GB級(jí)別的。

2.速度更快、內(nèi)置計(jì)算方法

運(yùn)行下面這個(gè)腳本,同樣是生成某個(gè)維度的兩個(gè)數(shù)組并相加,你就能看到原生List和Numpy Array的性能差距。

import time
import numpy as np
size_of_vec = 1000
def pure_python_version():
    t1 = time.time()
    X = range(size_of_vec)
    Y = range(size_of_vec)
    Z = [X[i] + Y[i] for i in range(len(X)) ]
    return time.time() - t1
def numpy_version():
    t1 = time.time()
    X = np.arange(size_of_vec)
    Y = np.arange(size_of_vec)
    Z = X + Y
    return time.time() - t1
t1 = pure_python_version()
t2 = numpy_version()
print(t1, t2)
print("Numpy is in this example " + str(t1/t2) + " faster!")

結(jié)果如下:

0.00048732757568359375 0.0002491474151611328
Numpy is in this example 1.955980861244019 faster!

可以看到,Numpy比原生數(shù)組快1.95倍。

如果你細(xì)心的話,還能發(fā)現(xiàn),Numpy array可以直接執(zhí)行加法操作。而原生的數(shù)組是做不到這點(diǎn)的,這就是Numpy 運(yùn)算方法的優(yōu)勢(shì)。

我們?cè)僮鰩状沃貜?fù)試驗(yàn),以證明這個(gè)性能優(yōu)勢(shì)是持久性的。

import numpy as np
from timeit import Timer
size_of_vec = 1000
X_list = range(size_of_vec)
Y_list = range(size_of_vec)
X = np.arange(size_of_vec)
Y = np.arange(size_of_vec)
def pure_python_version():
    Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ]
def numpy_version():
    Z = X + Y
timer_obj1 = Timer("pure_python_version()",
                   "from __main__ import pure_python_version")
timer_obj2 = Timer("numpy_version()",
                   "from __main__ import numpy_version")
print(timer_obj1.timeit(10))
print(timer_obj2.timeit(10)) # Runs Faster!
print(timer_obj1.repeat(repeat=3, number=10))
print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!

結(jié)果如下:

0.0029753120616078377
0.00014940369874238968
[0.002683573868125677, 0.002754641231149435, 0.002803879790008068]
[6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]

可以看到,第二個(gè)輸出的時(shí)間總是小得多,這就證明了這個(gè)性能優(yōu)勢(shì)是具有持久性的。

所以,如果你在做一些大數(shù)據(jù)研究,比如金融數(shù)據(jù)、股票數(shù)據(jù)的研究,使用Numpy能夠節(jié)省你不少內(nèi)存空間,并擁有更強(qiáng)大的性能。 ?

到此這篇關(guān)于Python大數(shù)據(jù)為啥一定要用Numpy Array的文章就介紹到這了,更多相關(guān)Python大數(shù)據(jù)Numpy Array內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

相關(guān)文章

最新評(píng)論