Python大數(shù)據(jù)用Numpy Array的原因解讀
Numpy 是Python科學(xué)計(jì)算的一個(gè)核心模塊。它提供了非常高效的數(shù)組對(duì)象,以及用于處理這些數(shù)組對(duì)象的工具。一個(gè)Numpy數(shù)組由許多值組成,所有值的類型是相同的。
Python的核心庫(kù)提供了 List 列表。列表是最常見的Python數(shù)據(jù)類型之一,它可以調(diào)整大小并且包含不同類型的元素,非常方便。
那么List和Numpy Array到底有什么區(qū)別?為什么我們需要在大數(shù)據(jù)處理的時(shí)候使用Numpy Array?答案是性能。
Numpy數(shù)據(jù)結(jié)構(gòu)在以下方面表現(xiàn)更好:
1.內(nèi)存大小—Numpy數(shù)據(jù)結(jié)構(gòu)占用的內(nèi)存更小。
2.性能—Numpy底層是用C語言實(shí)現(xiàn)的,比列表更快。
3.運(yùn)算方法—內(nèi)置優(yōu)化了代數(shù)運(yùn)算等方法。
下面分別講解在大數(shù)據(jù)處理時(shí),Numpy數(shù)組相對(duì)于List的優(yōu)勢(shì)。
1.內(nèi)存占用更小
適當(dāng)?shù)厥褂肗umpy數(shù)組替代List,你能讓你的內(nèi)存占用降低20倍。
對(duì)于Python原生的List列表,由于每次新增對(duì)象,都需要8個(gè)字節(jié)來引用新對(duì)象,新的對(duì)象本身占28個(gè)字節(jié)(以整數(shù)為例)。所以列表 list 的大小可以用以下公式計(jì)算:
64 + 8 * len(lst) + len(lst) * 28 字節(jié)
而使用Numpy,就能減少非常多的空間占用。比如長(zhǎng)度為n的Numpy整形Array,它需要:
96 + len(a) * 8 字節(jié)
可見,數(shù)組越大,你節(jié)省的內(nèi)存空間越多。假設(shè)你的數(shù)組有10億個(gè)元素,那么這個(gè)內(nèi)存占用大小的差距會(huì)是GB級(jí)別的。
2.速度更快、內(nèi)置計(jì)算方法
運(yùn)行下面這個(gè)腳本,同樣是生成某個(gè)維度的兩個(gè)數(shù)組并相加,你就能看到原生List和Numpy Array的性能差距。
import time import numpy as np size_of_vec = 1000 def pure_python_version(): t1 = time.time() X = range(size_of_vec) Y = range(size_of_vec) Z = [X[i] + Y[i] for i in range(len(X)) ] return time.time() - t1 def numpy_version(): t1 = time.time() X = np.arange(size_of_vec) Y = np.arange(size_of_vec) Z = X + Y return time.time() - t1 t1 = pure_python_version() t2 = numpy_version() print(t1, t2) print("Numpy is in this example " + str(t1/t2) + " faster!")
結(jié)果如下:
0.00048732757568359375 0.0002491474151611328
Numpy is in this example 1.955980861244019 faster!
可以看到,Numpy比原生數(shù)組快1.95倍。
如果你細(xì)心的話,還能發(fā)現(xiàn),Numpy array可以直接執(zhí)行加法操作。而原生的數(shù)組是做不到這點(diǎn)的,這就是Numpy 運(yùn)算方法的優(yōu)勢(shì)。
我們?cè)僮鰩状沃貜?fù)試驗(yàn),以證明這個(gè)性能優(yōu)勢(shì)是持久性的。
import numpy as np from timeit import Timer size_of_vec = 1000 X_list = range(size_of_vec) Y_list = range(size_of_vec) X = np.arange(size_of_vec) Y = np.arange(size_of_vec) def pure_python_version(): Z = [X_list[i] + Y_list[i] for i in range(len(X_list)) ] def numpy_version(): Z = X + Y timer_obj1 = Timer("pure_python_version()", "from __main__ import pure_python_version") timer_obj2 = Timer("numpy_version()", "from __main__ import numpy_version") print(timer_obj1.timeit(10)) print(timer_obj2.timeit(10)) # Runs Faster! print(timer_obj1.repeat(repeat=3, number=10)) print(timer_obj2.repeat(repeat=3, number=10)) # repeat to prove it!
結(jié)果如下:
0.0029753120616078377
0.00014940369874238968
[0.002683573868125677, 0.002754641231149435, 0.002803879790008068]
[6.536301225423813e-05, 2.9387418180704117e-05, 2.9171351343393326e-05]
可以看到,第二個(gè)輸出的時(shí)間總是小得多,這就證明了這個(gè)性能優(yōu)勢(shì)是具有持久性的。
所以,如果你在做一些大數(shù)據(jù)研究,比如金融數(shù)據(jù)、股票數(shù)據(jù)的研究,使用Numpy能夠節(jié)省你不少內(nèi)存空間,并擁有更強(qiáng)大的性能。 ?
到此這篇關(guān)于Python大數(shù)據(jù)為啥一定要用Numpy Array的文章就介紹到這了,更多相關(guān)Python大數(shù)據(jù)Numpy Array內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
jupyter?notebook內(nèi)核配置的圖文教程
Jupyter?Notebook是基于網(wǎng)頁的用于交互計(jì)算的應(yīng)用程序,下面這篇文章主要給大家介紹了關(guān)于jupyter?notebook內(nèi)核配置的相關(guān)資料,文中通過實(shí)例代碼介紹的非常詳細(xì),需要的朋友可以參考下2022-02-02TensorFlow2中提供的幾種處理特征列的方法小結(jié)
本文主要介紹了TensorFlow2中提供的幾種處理特征列的方法小結(jié),主要介紹了6種方式,具有一定的參考價(jià)值,感興趣的可以了解一下2023-09-09Python實(shí)現(xiàn)telnet服務(wù)器的方法
這篇文章主要介紹了Python實(shí)現(xiàn)telnet服務(wù)器的方法,涉及Python通過Telnet連接服務(wù)器的相關(guān)技巧,具有一定參考借鑒價(jià)值,需要的朋友可以參考下2015-07-07Python?Web開發(fā)通信協(xié)議WSGI?uWSGI?uwsgi使用對(duì)比全面介紹
這篇文章主要為大家介紹了Python?Web開發(fā)通信協(xié)議WSGI?uWSGI?uwsgi使用對(duì)比全面介紹,有需要的朋友可以借鑒參考下,希望能夠有所幫助,祝大家多多進(jìn)步,早日升職加薪2023-12-12python讀取查看npz/npy文件數(shù)據(jù)以及數(shù)據(jù)完全顯示方法實(shí)例
前兩天從在GitHub下載了一個(gè)代碼,其中的數(shù)據(jù)集是.npz結(jié)尾的文件,之前沒有見過不知道如何處理,下面這篇文章主要給大家介紹了關(guān)于python讀取查看npz/npy文件數(shù)據(jù)以及數(shù)據(jù)完全顯示方法的相關(guān)資料,需要的朋友可以參考下2022-04-04Python自動(dòng)化運(yùn)維之Ansible定義主機(jī)與組規(guī)則操作詳解
這篇文章主要介紹了Python自動(dòng)化運(yùn)維之Ansible定義主機(jī)與組規(guī)則操作,結(jié)合實(shí)例形式分析了自動(dòng)化運(yùn)維工具Ansible定義主機(jī)與組規(guī)則相關(guān)配置操作與注意事項(xiàng),需要的朋友可以參考下2019-06-06一個(gè)基于flask的web應(yīng)用誕生 使用模板引擎和表單插件(2)
一個(gè)基于flask的web應(yīng)用誕生第二篇,這篇文章主要介紹了如何使用jinja2模板引擎和wtf表單插件,具有一定的參考價(jià)值,感興趣的小伙伴們可以參考一下2017-04-04