使用threejs實現(xiàn)第一人稱視角的移動的問題(示例代碼)
在數(shù)據(jù)可視化領(lǐng)域利用webgl來創(chuàng)建三維場景或VR已經(jīng)越來越普遍,各種開發(fā)框架也應(yīng)運而生。今天我們就通過最基本的threejs來完成第一人稱視角的場景巡檢功能。如果你是一位threejs的初學(xué)者或正打算入門,我強烈推薦你仔細(xì)閱讀本文并在我的代碼基礎(chǔ)之上繼續(xù)深入學(xué)習(xí)。因為它將是你能夠在網(wǎng)上找到的最好的免費中文教程,通過本文你可以學(xué)習(xí)到一些基本的三維理論,threejs的api接口以及你應(yīng)該掌握的數(shù)學(xué)知識。當(dāng)然要想完全掌握threejs可能還有很長的路需要走,但至少今天我將帶你入門并傳授一些獨特的學(xué)習(xí)技巧。
第一人稱視角的場景巡檢主要需要解決兩個問題,人物在場景中的移動和碰撞檢測。移動與碰撞功能是所有三維場景首先需要解決的基本問題。為了方便理解,首先需要構(gòu)建一個簡單的三維場景并在遇到問題的時候向你演示如何解決它。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>平移與碰撞</title> <script src="js/three.js"></script> <script src="js/jquery3.4.1.js"></script> </head> <body> <canvas id="mainCanvas"></canvas> </body> <script> let scene, camera, renderer, leftPress, cube; init(); helper(); createBoxer(); animate(); function init() { // 初始化場景 scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // 創(chuàng)建渲染器 renderer = new THREE.WebGLRenderer({ canvas: document.getElementById("mainCanvas"), antialias: true, // 抗鋸齒 alpha: true }); renderer.setSize(window.innerWidth, window.innerHeight); // 創(chuàng)建透視相機 camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000); camera.position.set(0, 40, 30); camera.lookAt(0, 0, 0); // 參數(shù)初始化 mouse = new THREE.Vector2(); raycaster = new THREE.Raycaster(); // 環(huán)境光 var ambientLight = new THREE.AmbientLight(0x606060); scene.add(ambientLight); // 平行光 var directionalLight = new THREE.DirectionalLight(0xBCD2EE); directionalLight.position.set(1, 0.75, 0.5).normalize(); scene.add(directionalLight); } function helper() { var grid = new THREE.GridHelper(100, 20, 0xFF0000, 0x000000); grid.material.opacity = 0.1; grid.material.transparent = true; scene.add(grid); var axesHelper = new THREE.AxesHelper(30); scene.add(axesHelper); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); function createBoxer() { var geometry = new THREE.BoxGeometry(5, 5, 5); var material = new THREE.MeshPhongMaterial({color: 0x00ff00}); cube = new THREE.Mesh(geometry, material); scene.add(cube); $(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { cube.rotateOnAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 } }); $(window).mousedown(function (event) { leftPress = true; $(window).mouseup(function (event) { leftPress = false; </script> </html>
很多js的開發(fā)人員非常熟悉jquery,我引用它確實讓代碼顯得更加簡單。首先我在init()方法里初始化了一個場景。我知道在大部分示例中包括官方提供的demo里都是通過threejs動態(tài)的在document下創(chuàng)建一個<canvas/>節(jié)點。我強烈建議你不要這樣做,因為在很多單頁面應(yīng)用中(例如:Vue和Angular)直接操作DOM都不被推薦。接下來我使用helper()方法創(chuàng)建了兩個輔助對象:一個模擬地面的網(wǎng)格和一個表示世界坐標(biāo)系的AxesHelper。最后我利用createBoxer()方法在視角中央擺放了一個綠色的立方體以及綁定了三個鼠標(biāo)動作用來控制立方地旋轉(zhuǎn)。如圖:
你可以嘗試將代碼復(fù)制到本地并在瀏覽器中運行,移動鼠標(biāo)看看效果。接下來,為了讓方塊移動起來,我們需要添加一些鍵盤響應(yīng)事件,以及給方塊的“正面”上色。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>平移與碰撞</title> <script src="js/three.js"></script> <script src="js/jquery3.4.1.js"></script> </head> <body> <canvas id="mainCanvas"></canvas> </body> <script> let scene, camera, renderer, leftPress, cube; let left, right, front, back; init(); helper(); createBoxer(); animate(); function init() { // 初始化場景 scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // 創(chuàng)建渲染器 renderer = new THREE.WebGLRenderer({ canvas: document.getElementById("mainCanvas"), antialias: true, // 抗鋸齒 alpha: true }); renderer.setSize(window.innerWidth, window.innerHeight); // 創(chuàng)建透視相機 camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000); camera.position.set(0, 40, 30); camera.lookAt(0, 0, 0); // 參數(shù)初始化 mouse = new THREE.Vector2(); raycaster = new THREE.Raycaster(); // 環(huán)境光 var ambientLight = new THREE.AmbientLight(0x606060); scene.add(ambientLight); // 平行光 var directionalLight = new THREE.DirectionalLight(0xBCD2EE); directionalLight.position.set(1, 0.75, 0.5).normalize(); scene.add(directionalLight); } function helper() { var grid = new THREE.GridHelper(100, 20, 0xFF0000, 0x000000); grid.material.opacity = 0.1; grid.material.transparent = true; scene.add(grid); var axesHelper = new THREE.AxesHelper(30); scene.add(axesHelper); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); if (front) { cube.translateZ(-1) } if (back) { cube.translateZ(1); if (left) { cube.translateX(-1); if (right) { cube.translateX(1); function createBoxer() { var geometry = new THREE.BoxGeometry(5, 5, 5); var mats = []; mats.push(new THREE.MeshPhongMaterial({color: 0x00ff00})); mats.push(new THREE.MeshPhongMaterial({color: 0xff0000})); cube = new THREE.Mesh(geometry, mats); for (let j = 0; j < geometry.faces.length; j++) { if (j === 8 || j === 9) { geometry.faces[j].materialIndex = 1; } else { geometry.faces[j].materialIndex = 0; } scene.add(cube); $(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { cube.rotateOnAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 }); $(window).mousedown(function (event) { leftPress = true; $(window).mouseup(function (event) { leftPress = false; $(window).keydown(function (event) { switch (event.keyCode) { case 65: // a left = true; break; case 68: // d right = true; case 83: // s back = true; case 87: // w front = true; $(window).keyup(function (event) { left = false; right = false; back = false; front = false; </script> </html>
我們添加了keydown()事件和keyup()事件用來捕獲鍵盤響應(yīng)。我們還修改了createBoxer()方法,給朝向我們的那一面涂上紅色。你一定發(fā)現(xiàn)了BoxGeometry所代表的立方體雖然只有6個面,可是為了給“1個面”上色我們卻需要同時在“2個面”的材質(zhì)上著色。這是因為在三維場景中,“面”的含義表示由空間中3個點所代表的區(qū)域,而一個矩形由兩個三角形拼接而成。完成以后的樣子如下:
隨意拖動幾下鼠標(biāo),我們可能會得到一個類似的狀態(tài):
設(shè)想一下在第一人稱視角的游戲中,我們抬高視角觀察周圍后再降低視角,地平線是否依然處于水平狀態(tài)。換句話說,無論我們?nèi)绾瓮蟿邮髽?biāo),紅色的那面在朝向我們的時候都不應(yīng)該傾斜。要解釋這個問題,我們首先需要搞清楚三維場景中的坐標(biāo)系概念。在threejs的世界中存在兩套坐標(biāo)體系:世界坐標(biāo)系和自身坐標(biāo)系。世界坐標(biāo)系是整個場景的坐標(biāo)系統(tǒng),通過它可以定位場景中的物體。而自身坐標(biāo)系就比較復(fù)雜,實際上一個物體的自身坐標(biāo)系除了用來表示物體各個部分的相對關(guān)系以外主要用來表示物體的旋轉(zhuǎn)。想象一下月球的自轉(zhuǎn)和公轉(zhuǎn),在地月坐標(biāo)系中,月球圍繞地球公轉(zhuǎn),同時也繞著自身的Y軸旋轉(zhuǎn)。在我們上面的場景中,立方體自身的坐標(biāo)軸會隨著自身的旋轉(zhuǎn)而改變,當(dāng)我們的鼠標(biāo)自下而上滑動后,Y軸將不再垂直于地面。如果這時我們再橫向滑動鼠標(biāo)讓立方體繞Y軸旋轉(zhuǎn),自然整個面都會發(fā)生傾斜。如果你還不理解可以在自己的代碼中多嘗試幾次,理解世界坐標(biāo)系和自身坐標(biāo)系對于學(xué)習(xí)webgl尤其重要。很顯然,要模擬第一人稱的視角轉(zhuǎn)動我們需要讓視角上下移動的旋轉(zhuǎn)軸為自身坐標(biāo)系的X軸,左右移動的旋轉(zhuǎn)軸固定為穿過自身中心的一條與世界坐標(biāo)系Y軸保持平行的軸線。理解這個問題很不容易,可是解決它卻非常簡單。threejs為我們提供了方法,我們只需要修改mousemove()方法:
$(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { cube.rotateOnWorldAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); cube.rotateOnAxis( new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 ); } });
有了控制視角的方式,接下來我們移動一下方塊。新的問題又出現(xiàn)了:盒子的運動方向也是沿著自身坐標(biāo)系的。就和我們看著月亮行走并不會走到月亮上去的情形一樣,如果要模擬第一人稱視角的移動,視角的移動方向應(yīng)該永遠和世界坐標(biāo)系保持平行,那么我們是否可以通過世界坐標(biāo)系來控制物體的移動呢:
function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); if (front) { // cube.translateZ(-1) cube.position.z -= 1; } if (back) { // cube.translateZ(1); cube.position.z += 1; } if (left) { // cube.translateX(-1); cube.position.x -= 1; } if (right) { // cube.translateX(1); cube.position.x += 1; } }
很顯然也不行,原因是我們應(yīng)該讓物體的前進方向與物體面對的方向保持一致:
盡管這個需求顯得如此合理,可是threejs似乎并沒有提供有效的解決方案,就連官方示例中提供的基于第一人稱的移動也僅僅是通過固定物體Y軸數(shù)值的方法實現(xiàn)的。在射擊游戲中不能蹲下或爬上屋頂實在不能讓玩家接受。為了能夠在接下來的變換中分解問題和測試效果,我們在模型上添加兩個箭頭表示物體的前后方向。
let arrowFront, arrowBack; function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); arrowFront.setDirection(cube.getWorldDirection(new THREE.Vector3()).normalize()); arrowFront.position.copy(cube.position); arrowBack.setDirection(cube.getWorldDirection(new THREE.Vector3()).negate().normalize()); arrowBack.position.copy(cube.position); if (front) { // cube.translateZ(-1) cube.position.z -= 1; } if (back) { // cube.translateZ(1); cube.position.z += 1; if (left) { // cube.translateX(-1); cube.position.x -= 1; if (right) { // cube.translateX(1); cube.position.x += 1; } function createBoxer() { var geometry = new THREE.BoxGeometry(5, 5, 5); var mats = []; mats.push(new THREE.MeshPhongMaterial({color: 0x00ff00})); mats.push(new THREE.MeshPhongMaterial({color: 0xff0000})); cube = new THREE.Mesh(geometry, mats); for (let j = 0; j < geometry.faces.length; j++) { if (j === 8 || j === 9) { geometry.faces[j].materialIndex = 1; } else { geometry.faces[j].materialIndex = 0; } scene.add(cube); arrowFront = new THREE.ArrowHelper(cube.getWorldDirection(), cube.position, 15, 0xFF0000); scene.add(arrowFront); arrowBack = new THREE.ArrowHelper(cube.getWorldDirection().negate(), cube.position, 15, 0x00FF00); scene.add(arrowBack);
修改后的效果如下:
有了箭頭的輔助,我們能夠以比較直觀的方式測試算法是否有效。如果你能夠認(rèn)真讀到這里,可能已經(jīng)迫不及待想繼續(xù)了,但是還請稍安勿躁。進入下個環(huán)節(jié)前,我們需要首先了解幾個重要的概念。
- 三維向量(Vector3):可以表征三維空間中的點或來自原點(0,0,0)的矢量。需要注意,Vector3既可以表示空間中的一個點又可以表示方向。因此為了避免歧義,我建議在作為矢量的時候通過normalize()方法對向量標(biāo)準(zhǔn)化。具體api文檔參考。
- 歐拉角(Euler):表示一個物體在其自身坐標(biāo)系上的旋轉(zhuǎn)角度,歐拉角也是一個很常見的數(shù)學(xué)概念,優(yōu)點是對于旋轉(zhuǎn)的表述相對直觀,不過我們在項目中并不常用。
- 四元數(shù)(Quaternion):四元數(shù)是一個相對高深的數(shù)學(xué)概念,幾何含義與歐拉角類似。都可以用來表征物體的旋轉(zhuǎn)方向,優(yōu)點是運算效率更高。
- 四維矩陣(Matrix4):在threejs的世界中,任何一個對象都有它對應(yīng)的四維矩陣。它集合了平移、旋轉(zhuǎn)、縮放等操作。有時我們可以通過它來完成兩個對象的動作同步。
- 叉積(.cross() ):向量叉積表示由兩個向量所確定的平面的法線方向。叉積的用途很多,例如在第一人稱的視角控制下,實現(xiàn)左右平移就可以通過當(dāng)前視角方向z與垂直方向y做叉積運算獲得:z.cross(y)。
- 點積(.dot()):與向量叉積不同,向量點積為一個長度數(shù)據(jù)。vect_a.dot(vect_b)表示向量b在向量a上的投影長度,具體如何使用我們馬上就會看到
在理解了上面的概念以后,我們就可以實現(xiàn)沿視角方向平移的操作:我們知道,物體沿平面(XOZ)坐標(biāo)系運動都可以分解為X方向上的運動分量和Z軸方向上的運動分量。首先獲取視角的方向,以三維向量表示。接著我們需要以這個向量和X軸方向上的一個三維向量做點積運算,從而得到一個投影長度。這個長度即代表物體沿視角方向移動的水平x軸方向上的運動分量。同理,我們在計算與Z軸方向上的點積,又可以獲得物體沿視角方向移動的z軸方向的運動分量。同時執(zhí)行兩個方向上的運動分量完成平移操作。
接下來,我們先通過實驗觀察是否能夠獲得這兩個運動分量和投影長度。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>平移與碰撞</title> <script src="js/three.js"></script> <script src="js/jquery3.4.1.js"></script> </head> <body> <canvas id="mainCanvas"></canvas> </body> <script> let scene, camera, renderer, leftPress, cube, arrowFront, arrowFrontX, arrowFrontZ; let left, right, front, back; init(); // helper(); createBoxer(); animate(); function init() { // 初始化場景 scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // 創(chuàng)建渲染器 renderer = new THREE.WebGLRenderer({ canvas: document.getElementById("mainCanvas"), antialias: true, // 抗鋸齒 alpha: true }); renderer.setSize(window.innerWidth, window.innerHeight); // 創(chuàng)建透視相機 camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000); camera.position.set(0, 40, 30); camera.lookAt(0, 0, 0); // 參數(shù)初始化 mouse = new THREE.Vector2(); raycaster = new THREE.Raycaster(); // 環(huán)境光 var ambientLight = new THREE.AmbientLight(0x606060); scene.add(ambientLight); // 平行光 var directionalLight = new THREE.DirectionalLight(0xBCD2EE); directionalLight.position.set(1, 0.75, 0.5).normalize(); scene.add(directionalLight); } function helper() { var grid = new THREE.GridHelper(100, 20, 0xFF0000, 0x000000); grid.material.opacity = 0.1; grid.material.transparent = true; scene.add(grid); var axesHelper = new THREE.AxesHelper(30); scene.add(axesHelper); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); arrowFront.setDirection(cube.getWorldDirection(new THREE.Vector3()).normalize()); arrowFront.position.copy(cube.position); let vect = cube.getWorldDirection(new THREE.Vector3()); arrowFrontX.setDirection(new THREE.Vector3(1, 0, 0)); arrowFrontX.setLength(vect.dot(new THREE.Vector3(15, 0, 0))); arrowFrontX.position.copy(cube.position); arrowFrontZ.setDirection(new THREE.Vector3(0, 0, 1)); arrowFrontZ.setLength(vect.dot(new THREE.Vector3(0, 0, 15))); arrowFrontZ.position.copy(cube.position); if (front) { // cube.translateZ(-1) cube.position.z -= 1; } if (back) { // cube.translateZ(1); cube.position.z += 1; if (left) { // cube.translateX(-1); cube.position.x -= 1; if (right) { // cube.translateX(1); cube.position.x += 1; function createBoxer() { var geometry = new THREE.BoxGeometry(5, 5, 5); var mats = []; mats.push(new THREE.MeshPhongMaterial({color: 0x00ff00})); mats.push(new THREE.MeshPhongMaterial({color: 0xff0000})); cube = new THREE.Mesh(geometry, mats); for (let j = 0; j < geometry.faces.length; j++) { if (j === 8 || j === 9) { geometry.faces[j].materialIndex = 1; } else { geometry.faces[j].materialIndex = 0; } scene.add(cube); arrowFront = new THREE.ArrowHelper(cube.getWorldDirection(), cube.position, 15, 0xFF0000); scene.add(arrowFront); let cubeDirec = cube.getWorldDirection(new THREE.Vector3()); arrowFrontX = new THREE.ArrowHelper(cubeDirec.setY(0), cube.position, cubeDirec.dot(new THREE.Vector3(0, 0, 15)), 0x0000ff); scene.add(arrowFrontX); arrowFrontZ = new THREE.ArrowHelper(cubeDirec.setY(0), cube.position, cubeDirec.dot(new THREE.Vector3(15, 0, 0)), 0xB5B5B5) scene.add(arrowFrontZ); $(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { cube.rotateOnWorldAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); cube.rotateOnAxis( new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 }); $(window).mousedown(function (event) { leftPress = true; $(window).mouseup(function (event) { leftPress = false; $(window).keydown(function (event) { switch (event.keyCode) { case 65: // a left = true; break; case 68: // d right = true; case 83: // s back = true; case 87: // w front = true; $(window).keyup(function (event) { left = false; right = false; back = false; front = false; </script> </html>
通過箭頭的輔助,我們很容易獲得以下圖形:
紅色箭頭表示物體的朝向,藍色表示物體沿x軸上的投影方向和長度。灰色表示沿z軸上的投影方向和長度。在確認(rèn)方法可行以后,我們繼續(xù)實現(xiàn)平移操作。完整代碼如下,這個運算的方式很重要,讀者應(yīng)該仔細(xì)比較兩段代碼的差別。
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>平移與碰撞</title> <script src="js/three.js"></script> <script src="js/jquery3.4.1.js"></script> </head> <body> <canvas id="mainCanvas"></canvas> </body> <script> let scene, camera, renderer, leftPress, cube, arrowFront, arrowFrontX, arrowFrontZ; let left, right, front, back; init(); helper(); createBoxer(); animate(); function init() { // 初始化場景 scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // 創(chuàng)建渲染器 renderer = new THREE.WebGLRenderer({ canvas: document.getElementById("mainCanvas"), antialias: true, // 抗鋸齒 alpha: true }); renderer.setSize(window.innerWidth, window.innerHeight); // 創(chuàng)建透視相機 camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000); camera.position.set(0, 40, 30); camera.lookAt(0, 0, 0); // 參數(shù)初始化 mouse = new THREE.Vector2(); raycaster = new THREE.Raycaster(); // 環(huán)境光 var ambientLight = new THREE.AmbientLight(0x606060); scene.add(ambientLight); // 平行光 var directionalLight = new THREE.DirectionalLight(0xBCD2EE); directionalLight.position.set(1, 0.75, 0.5).normalize(); scene.add(directionalLight); } function helper() { var grid = new THREE.GridHelper(100, 20, 0xFF0000, 0x000000); grid.material.opacity = 0.1; grid.material.transparent = true; scene.add(grid); var axesHelper = new THREE.AxesHelper(30); scene.add(axesHelper); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); arrowFront.setDirection(cube.getWorldDirection(new THREE.Vector3()).normalize()); arrowFront.position.copy(cube.position); let vect = cube.getWorldDirection(new THREE.Vector3()); if (front) { cube.position.z += vect.dot(new THREE.Vector3(0, 0, 15)) * 0.01; cube.position.x += vect.dot(new THREE.Vector3(15, 0, 0)) * 0.01; } function createBoxer() { var geometry = new THREE.BoxGeometry(5, 5, 5); var mats = []; mats.push(new THREE.MeshPhongMaterial({color: 0x00ff00})); mats.push(new THREE.MeshPhongMaterial({color: 0xff0000})); cube = new THREE.Mesh(geometry, mats); for (let j = 0; j < geometry.faces.length; j++) { if (j === 8 || j === 9) { geometry.faces[j].materialIndex = 1; } else { geometry.faces[j].materialIndex = 0; } scene.add(cube); arrowFront = new THREE.ArrowHelper(cube.getWorldDirection(), cube.position, 15, 0xFF0000); scene.add(arrowFront); $(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { cube.rotateOnWorldAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); cube.rotateOnAxis( new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 }); $(window).mousedown(function (event) { leftPress = true; $(window).mouseup(function (event) { leftPress = false; $(window).keydown(function (event) { switch (event.keyCode) { case 65: // a left = true; break; case 68: // d right = true; case 83: // s back = true; case 87: // w front = true; $(window).keyup(function (event) { left = false; right = false; back = false; front = false; </script> </html>
向后和左右平移的操作留給大家自己實現(xiàn)。有了以上基礎(chǔ),如何控制Camera移動就很簡單了。幾乎就是將cube的操作替換成camera即可:
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8"> <title>第一人稱視角移動</title> <script src="js/three.js"></script> <script src="js/jquery3.4.1.js"></script> </head> <body> <canvas id="mainCanvas"></canvas> </body> <script> let scene, camera, renderer, leftPress, cube, arrowFront, arrowFrontX, arrowFrontZ; let left, right, front, back; init(); helper(); animate(); function init() { // 初始化場景 scene = new THREE.Scene(); scene.background = new THREE.Color(0xffffff); // 創(chuàng)建渲染器 renderer = new THREE.WebGLRenderer({ canvas: document.getElementById("mainCanvas"), antialias: true, // 抗鋸齒 alpha: true }); renderer.setSize(window.innerWidth, window.innerHeight); // 創(chuàng)建透視相機 camera = new THREE.PerspectiveCamera(75, window.innerWidth / window.innerHeight, 0.1, 1000); camera.position.set(0, 10, 30); // 參數(shù)初始化 mouse = new THREE.Vector2(); raycaster = new THREE.Raycaster(); // 環(huán)境光 var ambientLight = new THREE.AmbientLight(0x606060); scene.add(ambientLight); // 平行光 var directionalLight = new THREE.DirectionalLight(0xBCD2EE); directionalLight.position.set(1, 0.75, 0.5).normalize(); scene.add(directionalLight); } function helper() { var grid = new THREE.GridHelper(100, 20, 0xFF0000, 0x000000); grid.material.opacity = 0.1; grid.material.transparent = true; scene.add(grid); var axesHelper = new THREE.AxesHelper(30); scene.add(axesHelper); function animate() { requestAnimationFrame(animate); renderer.render(scene, camera); let vect = camera.getWorldDirection(new THREE.Vector3()); if (front) { camera.position.z += vect.dot(new THREE.Vector3(0, 0, 15)) * 0.01; camera.position.x += vect.dot(new THREE.Vector3(15, 0, 0)) * 0.01; } $(window).mousemove(function (event) { event.preventDefault(); if (leftPress) { camera.rotateOnWorldAxis( new THREE.Vector3(0, 1, 0), event.originalEvent.movementX / 500 ); camera.rotateOnAxis( new THREE.Vector3(1, 0, 0), event.originalEvent.movementY / 500 }); $(window).mousedown(function (event) { leftPress = true; $(window).mouseup(function (event) { leftPress = false; $(window).keydown(function (event) { switch (event.keyCode) { case 65: // a left = true; break; case 68: // d right = true; case 83: // s back = true; case 87: // w front = true; $(window).keyup(function (event) { left = false; right = false; back = false; front = false; </script> </html>
解決了平移操作以后,碰撞檢測其實就不那么復(fù)雜了。我們可以沿著攝像機的位置向上下前后左右六個方向做光線投射(Raycaster),每次移動首先檢測移動方向上的射線是否被阻擋,如果發(fā)生阻擋且距離小于安全距離,即停止該方向上的移動。后面的部分我打算放在下一篇博客中介紹,如果大家對這篇文章敢興趣或有什么建議歡迎給我留言或加群討論。
到此這篇關(guān)于使用threejs實現(xiàn)第一人稱視角的移動的方法的文章就介紹到這了,更多相關(guān)threejs第一人稱視角的移動內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
相關(guān)文章
js實現(xiàn)控制textarea輸入字符串的個數(shù),鼠標(biāo)按下抬起判斷輸入字符數(shù)
下面小編就為大家?guī)硪黄猨s實現(xiàn)控制textarea輸入字符串的個數(shù),鼠標(biāo)按下抬起判斷輸入字符數(shù)。小編覺得挺不錯的,現(xiàn)在就分享給大家,也給大家做個參考。一起跟隨小編過來看看吧2016-10-10在iframe中使bootstrap的模態(tài)框在父頁面彈出問題
這篇文章主要介紹了在iframe中使bootstrap的模態(tài)框在父頁面彈出問題,解決方法非常不錯,具有參考借鑒價值,需要的朋友可以參考下2017-08-08